
Description of the XDA/XDR mesh format used in
libMesh

Benjamin S. Kirk, John W. Peterson, David J. Knezevic
libmesh-devel@lists.sourceforge.net

Revision: 1.2

August 17, 2005

1 Background

The XDA and XDR formats used by libMesh to store mesh data are an extension to the
mesh format used by the research code MGF, which was developed in the CFDLab at the
university of Texas at Austin. This efficient format has simply been extended to support
general element types.

1.1 XDR

XDR, or the External Data Representation, is a standard developed by Sun Microsystems
for storing binary data in a machine-independent format. Anyone who has suffered through
endian-issues in a heterogeneous machine environment will immediately see the benefit of
such a format. XDR is a C API that is available on all modern UNIX-type systems. The
XDR API is usually defined in the header file <rpc/rpc.h>.

1.2 XDA

So, I said XDR is available on all modern UNIX systems. . . Unfortunately, the world has
other types of machines, and not all of them immediately understand XDR. In libMesh, an
“XDA” file is the ASCII version of the data that would otherwise be written to an XDR file.
Another important use of the XDA file format is for debugging purposes. If there is some
problem with the data files you are writing, it is often solved by writing an ASCII version
of the same data, and examining it visually for errors. Once you’ve found the problem and
made your changes, you can seamlessly return to writing the binary XDR format.

2 The File Format

libMesh mesh files consist of two sections, the header and the data. The header contains
important size information. It defines the number of elements, number of nodes, etc. . . that

1



are in the mesh. The data section contains the actual element connectivity, the nodal
coordinates, and any boundary condition information. The XDA mesh used in this example
corresponds to the reference elements/2D/one quad.xda file distributed with libMesh.

2.1 Header

The header of an XDR/XDA file looks something like this:

LIBM 0
1 # Num. Elements
4 # Num. Nodes
6 # Length of connectivity vector
4 # Num. Boundary Conds.
65536 # String Size (ignore)
1 # Num. Element Types.
5 # Element types in each block.
1 # Num. of elements in each block at each refinement level.
Id String
Title String

The header defines several important sizes that are used to enable efficient, block-reading of
the data section. A line-by-line description of the header follows:

The first line of the file is a string that defines what code wrote the file. There are three
possibilies: MGF, DEAL and LIBM. The reason for this first line is backwards-compatibility.
In this document we will mostly discuss the “LIBM” format. This is the newest and most
flexible of the three formats; it allows hybrid meshes and adaptive mesh refinement informa-
tion to be written out. The number following the string ”LIBM” on the first line indicates
the number of levels of refinement in the mesh. The mesh in the above example has no
refinement structure, so this number is zero.

The next line contains a single integer that defines the number of elements in the mesh.
Anything after the # is ignored and may be used as a comment.

The next line contains the length of the connectivity array which is the array that con-
tains all the data in the connectivity section of the XDA file, discussed below. This size
is important since it allows us to read in the entire connectivity array for the mesh into a
buffer of this length.

The number of boundary condition describes just that. In libMesh boundary conditions
are assigned to specific faces of elements. The format for specifying boundary conditions will
be discussed in the data section. We only specify boundary conditions for level 0 elements
(i.e. elements with no parents). From the level 0 elements we can infer the boundary
information of all other elements in the mesh.

The next line defines the maximum string size for the subsequent identification strings
Id String and Title String. This is used to prevent buffer-overruns when reading ridicu-
lously long titles (I think). It may safely be ignored. These strings may be used for identifi-
cation purposes.

2



2.1.1 Augmented Header

The three lines after the string size are not read in for the MGF format, since these lines are
related only to hybrid meshes (the MGF format does not support hybrid meshes).

When reading and writing meshes, libMesh orders the elements into contiguous blocks
based on refinement level and element type. For instance, consider a mesh with two levels
of refinement (i.e. level 0 elements and level 1 elements) and with both quadrilaterals and
triangles. First, elements are grouped according to their refinement level, so all the level 0
elements are written first, followed by the level 1 elements. Within each block of elements at
a given level, they are written in blocks based on element type. So the level 0 triangles will
be grouped together, as will the level 0 quadrilaterals. In this case since the mesh contains
both quadrilaterals and triangles, the “number of element types” line in the header would
be 2. For the one quad.xda example, there is only one element type.

The reason for grouping elements in the way described above is efficiency. It would be
possible to write the elements in any order, but then two additional IDs would be necessary
to define the element type and its refinement level. Writing the elements in blocks like this
allows a savings of 2*n elem integers, or 2 ∗ 4∗n elem bytes. Also, it makes sense to write
out the elements in order of increasing refinement level because when we read in an XDA file
and reconstruct the refinement hierarchy, we need to build the level 0 elements first, followed
by the level 1 elements and so forth.

The next line defines the element types that the mesh contains. The value here corre-
sponds to the integer representation of the enum ElemTypes. Valid values of this enum may
be found on the documentation page.

The final line defines the number of elements in each block of elements of the same type
at each level. This line should contain (Number of levels) × (Number of element types)
entries, and the sum of these values should be the number of elements in the mesh (defined
in the second line of the header).

2.2 Data

The data section for this example is as follows:

0 1 2 3 0 -1
0. 0. 0.
1. 0. 0.
1. 1. 0.
0. 1. 0.

0 0 0
0 1 1
0 2 2
0 3 3

The data section consists of two mandatory and one optional section. The mandatory
sections are the element connectivity and the nodal locations. The optional section defines
the boundary conditions (note that if the number of boundary conditions is set to 0 in the
header then the boundary condition section will not be read).

3

http://libmesh.sourceforge.net/doxygen/namespacelibMeshEnums.html#a145


2.2.1 Connectivity

The connectivity section has two roles: (i) to define which nodes are connected to which
elements, and (ii) to define the refinement hierarchy by specifying element and parent IDs.

Each element has its own line in this section. Suppose a given element has N nodes,
then the first N entries on that element’s line specify which nodes the element is connected
to, and the last two entries specify the element’s ID and its parent’s ID respectively. In this
case there is only one element, so the connectivity section contains only one line. For this
example the local nodes on the first element map to the global nodes 0, 1, 2, and 3. The
element has an ID of 0, and it has no parent (it is a level 0 element) so its parent ID is -1.
More complicated example meshes may be found in the Appendix.

Unlike many unstructured mesh formats, libMesh stores the element connectivity first.
The reason for this is that, for parallel meshes, libMesh partitions on elements. That is to say,
each element “belongs” to one and only one processor. By storing the element connectivity
first elements may be distributed to various processors before the nodal locations are read.
When the nodes are read they are only sent to the processors that need them.

2.2.2 Nodes

The next section simply consists of (x, y, z) triples defining the location of each node. There
are as many lines in this section as there are nodes defined in the header. Note that libMesh
always expects 3 coordinate values for each point, even when the library is compiled to
support only 2D meshes. The entire node array is thus 3∗n nodes entries long. In this
example the z coordinate is identically 0. In general, z can be any number since it will be
ignored in 2D mode.

For the XDR binary format the coordinates are treated as libMesh real numbers, which
are defined at compile-time to be either floats or doubles. Note: In the future, nodes may
be written as floats and then cast to reals for space savings. In other words, don’t rely on
double precision for your nodal coordinates.

2.2.3 Boundary Conditions

Each boundary condition is defined by three integer numbers: the element number, the side
number on that element, and the boundary condition number. There will be a line in this
section for each boundary condition, up to the number of boundary conditions specified.
The boundary condition number may be any value which fits in a short int. As mentioned
above, in a mesh with refinement hierarchy boundary conditions are only stored on for the
level 0 elements. A non-level 0 element can obtain boundary information from its level 0
ancestor.

Note that the boundary condition numbers mean nothing to libMesh, they are simply
specified for certain faces of certain elements. The BoundaryInfo class may be used to
access the boundary condition numbers assigned to a particular element face. The user may
use these boundary conditions in their code to impose boundary conditions. There are no
“automatic” boundary conditions in libMesh, that is there are no special boundary condition
IDs that may be specified such that a certain boundary condition is imposed. Since libMesh

4

http://libmesh.sourceforge.net/doxygen/classBoundaryInfo.html


is a framework rather than a simulation tool it leaves the responsibility of assigning boundary
conditions with the user.

5



A Hybrid Mesh

This is an example XDA hybrid-element mesh.

LIBM 0
10 # Num. Elements
11 # Num. Nodes
52 # Length of conectivity array
0 # Num. Boundary Conds.
65536 # String Size (ignore)
2 # Num. Element Blocks.
5 3 # Element types in each block.
2 8 # Num. of elements in each block at each level.
Id String
Title String
0 4 8 7 0 -1
8 5 2 6 1 -1
7 9 3 2 -1
3 9 6 3 -1
6 9 8 4 -1
8 9 7 5 -1
4 10 8 6 -1
8 10 5 7 -1
5 10 1 8 -1
1 10 4 9 -1

0. 0. 0.
2. 0. 0.
2. 2. 0.
0. 2. 0.
1. 0. 0.
2. 1. 0.
1. 2. 0.
0. 1. 0.
1. 1. 0.
.5 1.5 0.
1.5 .5 0.

6



Figure 1: Hybrid element mesh (note that the numbers are off by one).

7



B Refined Hybrid Mesh

Here the hybrid mesh from above has been uniformly refined once. The corresponding XDA
file is:

LIBM 1
50 # Num. Elements
33 # Num. Nodes
260 # Sum of Element Weights
0 # Num. Boundary Conds.
65536 # String Size (ignore)
2 # Num. Element Blocks.
5 3 # Element types in each block.
2 8 8 32 # Num. of elements in each block at each level.
Id String
Title String
0 1 2 3 0 -1
2 4 5 6 1 -1
3 7 8 2 -1
8 7 6 3 -1
6 7 2 4 -1
2 7 3 5 -1
1 9 2 6 -1
2 9 4 7 -1
4 9 10 8 -1
10 9 1 9 -1

0 11 12 13 10 0
11 1 14 12 11 0
13 12 15 3 12 0
12 14 2 15 13 0
2 16 17 18 14 1
16 4 19 17 15 1
18 17 20 6 16 1
17 19 5 20 17 1
3 21 22 18 2
21 7 23 19 2
22 23 8 20 2
21 23 22 21 2
8 23 24 22 3
23 7 25 23 3
24 25 6 24 3
23 25 24 25 3
6 25 18 26 4
25 7 26 27 4
18 26 2 28 4
25 26 18 29 4
2 26 15 30 5

8



26 7 21 31 5
15 21 3 32 5
26 21 15 33 5
1 27 14 34 6
27 9 28 35 6
14 28 2 36 6
27 28 14 37 6
2 28 16 38 7
28 9 29 39 7
16 29 4 40 7
28 29 16 41 7
4 29 30 42 8
29 9 31 43 8
30 31 10 44 8
29 31 30 45 8
10 31 32 46 9
31 9 27 47 9
32 27 1 48 9
31 27 32 49 9

0.000000e+00 0.000000e+00 0.000000e+00
1.000000e+00 0.000000e+00 0.000000e+00
1.000000e+00 1.000000e+00 0.000000e+00
0.000000e+00 1.000000e+00 0.000000e+00
2.000000e+00 1.000000e+00 0.000000e+00
2.000000e+00 2.000000e+00 0.000000e+00
1.000000e+00 2.000000e+00 0.000000e+00
5.000000e-01 1.500000e+00 0.000000e+00
0.000000e+00 2.000000e+00 0.000000e+00
1.500000e+00 5.000000e-01 0.000000e+00
2.000000e+00 0.000000e+00 0.000000e+00
5.000000e-01 0.000000e+00 0.000000e+00
5.000000e-01 5.000000e-01 0.000000e+00
0.000000e+00 5.000000e-01 0.000000e+00
1.000000e+00 5.000000e-01 0.000000e+00
5.000000e-01 1.000000e+00 0.000000e+00
1.500000e+00 1.000000e+00 0.000000e+00
1.500000e+00 1.500000e+00 0.000000e+00
1.000000e+00 1.500000e+00 0.000000e+00
2.000000e+00 1.500000e+00 0.000000e+00
1.500000e+00 2.000000e+00 0.000000e+00
2.500000e-01 1.250000e+00 0.000000e+00
0.000000e+00 1.500000e+00 0.000000e+00
2.500000e-01 1.750000e+00 0.000000e+00
5.000000e-01 2.000000e+00 0.000000e+00
7.500000e-01 1.750000e+00 0.000000e+00
7.500000e-01 1.250000e+00 0.000000e+00

9



1.250000e+00 2.500000e-01 0.000000e+00
1.250000e+00 7.500000e-01 0.000000e+00
1.750000e+00 7.500000e-01 0.000000e+00
2.000000e+00 5.000000e-01 0.000000e+00
1.750000e+00 2.500000e-01 0.000000e+00
1.500000e+00 0.000000e+00 0.000000e+00

10



Figure 2: Uniform refinement of previous hybrid mesh.

11


	Background
	XDR
	XDA

	The File Format
	Header
	Augmented Header

	Data
	Connectivity
	Nodes
	Boundary Conditions


	Hybrid Mesh
	Refined Hybrid Mesh

