

The contents of this manual and the associated KD Chart software are the property of Klarälvdalens
Datakonsult AB and are copyrighted. Any reproduction in whole or in part is strictly prohibited without prior
written permission by Klarälvdalens Datakonsult AB.

KD Chart and the KD Chart logo are trademarks or registered trademarks of Klarälvdalens Datakonsult AB in
the European Union, the United States, and/or other countries. Other product and company names and logos
may be trademarks or registered trademarks of their respective companies.

Table of Contents
1. Introduction ...

What You Should Know .. 1
The Structure of This Manual ... 2
What's next ... 2

2. KD Chart 2 API Introduction ..
Overview .. 3
KD Chart and Interview .. 5
Attribute sets ... 6
Memory Management ... 7
What's Next .. 8

3. Basic steps: Create a Chart ...
Prerequisites ... 9
The Procedure ... 9
Two Ways To Your Chart .. 11
What's Next .. 15

4. Planes and Diagrams ...
Cartesian Coordinate Planes ... 17
Polar coordinate plane ... 73
Ternary coordinate plane ... 89
What's next ... 90

5. Axes ..
Cartesian Axis ... 91
Ternary Axis ... 92
How to configure ... 92
Tips ... 94
What's next ... 101

6. Legends ..
How to configure ... 102
Tips ... 105
What's next ... 109

7. Header and Footers ...
How to configure ... 110
Tips ... 113
What's next ... 121

8. Customizing your Chart ...
Attributes Model, Abstract Diagram .. 122
Data Values Attributes .. 124
Text Attributes .. 126
Markers Attributes ... 128
Background Attributes .. 131
Frame Attributes .. 133
Grid Attributes .. 135
ThreeD Attributes .. 137
Font Sizes and other Measures .. 140
Relative and Absolute Positions .. 142

iii

What's next ... 143
9. Advanced Charting ...

Example programs to consult .. 145
What's next ... 149

A. Q&A section ...

iv

List of Figures
3.1. A Simple Widget .. 12
3.2. A Simple Chart .. 14
4.1. A Normal Bar Chart .. 18
4.2. A Stacked Bar Chart ... 18
4.3. A Percent Bar Chart .. 19
4.4. A Simple Bar ChartWidget .. 21
4.5. Bar with Configured Attributes ... 26
4.6. A Full featured Bar Chart ... 34
4.7. A Normal Line Chart .. 36
4.8. A Stacked Line Chart .. 36
4.9. A Percent Line Chart .. 37
4.10. A Simple Line ChartWidget ... 39
4.11. Line With Configured Attributes ... 44
4.12. A Full featured Line Chart .. 52
4.13. A Point Chart ... 53
4.14. A Full featured Point Chart ... 61
4.15. An Area Chart .. 62
4.16. A Full featured Area Chart ... 72
4.17. A Simple Pie Chart ... 74
4.18. An Exploding Pie Chart ... 75
4.19. A Simple Pie Widget ... 77
4.20. Pie With Configured Attributes ... 82
4.21. A Full featured Pie Chart ... 89
5.1. A Simple Widget With Axis ... 94
5.2. Axis with configured Labels and Titles ... 100
6.1. A Widget With a simply configured Legend .. 105
6.2. Legend advanced example ... 108
7.1. A Widget with a header and a footer .. 112
7.2. A Chart with a configured Header ... 116
7.3. Headers and Footers advanced example .. 121
8.1. A Chart with a configured Data Values Labels 126
8.2. A Chart with a configured Data Values Labels 128
8.3. A Chart with configured Data Values Markers 130
8.4. A Chart with configured Back Ground Attributes 132
8.5. A Chart with configured Frame Attributes ... 134
8.6. A Chart with configured Grid Attributes ... 136
8.7. A ThreeD Bar Chart .. 139
8.8. Data value text positions relative to compass points 142
9.1. /examples/Axis/Parameters .. 145
9.2. /examples/Bars/Advanced .. 145
9.3. /examples/HeadersFooters/HeadersFooters/Advanced 146
9.4. /examples/Legends/LegendAdvanced ... 146
9.5. /examples/Lines/Advanced ... 147
9.6. /examples/ModelView .. 147
9.7. /examples/Pie/Advanced .. 148
9.8. /examples/SharedAbscissa ... 148

v

9.9. /examples/Widget/Advanced .. 148

vi

Chapter 1. Introduction
KD Chart is Klarälvdalens Datakonsult AB's charting package for Qt applications. This
is the KD Chart Programmer's Manual. It will get you started with creating your charts
and provides lots of pointers to the many advanced features in KD Chart.

• Depending on your KD Chart version, you will find different INSTALL files that
explain how to install KD Chart on your platform and a step by step description
about how to build it from sources.

• KD Chart also comes with an extensive Reference Manual generated directly from
the source code itself.

You should refer to it in conjunction with this Programmer's Manual.

• What is KD Chart?

KD Chart is a tool for creating business and scientific charts, and is the most
powerful Qt component of its kind. Besides having all the standard features, it also
enables the developer to design and manage a large number of axes and provide
sophisticated means of layout customization. Since all configuration settings have
reasonable defaults you can usually get by with setting only a handful of parameters
and relying on the defaults for the rest.

• What can we use KD Chart for?

KD Chart is used by a variety of programs for many different purposes.

The above example shows how KD Chart is used for visualizing flood events in a
river; other samples on our web site at http://www.kdab.net/kdchart show
how KD Chart is used for monitoring seismic activity. It is no coincidence that the
current version of the KOffice productivity suite uses our library.

* Display a view with small diagrams and arrows showing how the main classes
work together

What You Should Know
You should be familiar with writing Qt applications, as well as have a working C++
knowledge. When you are in doubt about how a Qt class mentioned in this
Programmer's Guide works, please check the Qt reference documentation or a good
book about Qt. A more in-depth introduction to the API can be found in the file doc/
KDChart-2.0-API-Introduction. Also to browse KD Chart API Reference
documentation start with this file: doc/refman/index.html.

1

The Structure of This Manual
How we will proceed to present KD Chart?

This manual starts with an introduction to the KD Chart 2.0 API before going through
the basic steps and methods for the user to create her own chart.

The following Chapter 4 Coordinate planes and Diagrams will provide the
reader with more details about the different chart types supported and the information
you need to know in order to use KD Chart's features in the best possible way.

The subsequent chapters contain more advanced customizing material like how to
specify colors, fonts and other attributes if you don't want to use KD Chart's default
settings. How to create and display headers, footers and legends as well as how to
configure your chart axes is also a part of these chapters.

Chapter 9 Advanced Charting, will guide you through KD Chart's other more
advanced features and describe the way to use them (frames and backgrounds, data
values, axis and grid manipulations etc...). It will also show in details a number of
interesting features like Interactive and Multiple charts or Zooming.

We provide you with lots of sample code combined with screenshots that show the
resulting display. We recommend our readers to try and run the sample code and
experiment with the various settings.

What's next
In the next chapter we introduce you to the KD Chart 2.0 new API.

2

Chapter 2. KD Chart 2 API Introduction
Version 2.0 of KD Chart fully supports and builds on the technologies introduced with
Qt 4. The charting engine makes use of the Arthur and Scribe painting and text
rendering frameworks to achieve high quality visual results. KD Chart 2.0 also
integrates with the Interview framework for model/view separation and, much like Qt 4
itself, provides a convenience Widget class for those cases where that is too complex to
use.

Overview
KD Chart 2.0 API strives for maximum consistency with the concepts and API style
found in Qt 4. Of course, this means breaking source compatibility in several places, but
like Trolltech, we have made a conscious decision that it would be better to clean up the
API now, than to carry it with us into the next KD Chart generation.

Note

Wherever possible, compatibility methods and classes have been, or will
be, provided.

The core of KD Chart's 2.0 API is the KDChart::Chart class. It encapsulates the
canvas onto which the individual components of a chart are painted, manages them and
provides access to them. There can be more than one KDChart::Diagram on a
KDChart::Chart. How they are laid out is determined by which axes, if any, they
share (more on axes below).

KDChart::Diagram subclasses for the various types of charts are provided, such as
KDChart::PieDiagram, and users can subclass KDChart::AbstractDiagram (or
one of the other Diagram classes starting with 'Abstract', which are designed to be base
classes) to implement custom chart types. A typical use of a simple Bar Diagram looks
like this:

Code Sample

using namespace KDChart;
......
BarDiagram *bars = new BarDiagram;
bars->setModel(&m_model);
chart->coordinatePlane()->replaceDiagram(bars);
.....

In Chapter 3 Basic steps: Create a Chart we will make this somewhat abstract
description more concrete by looking at some complete examples (Widget and Charts),

3

which we recommend you to compile and run.

For now, in order for you to get an overview about the KD Chart 2.0 API and its
features you need to understand the following base concepts:

• Each diagram has an associated Coordinate Plane (Cartesian by default), which is
responsible for the translation of data values into pixel positions. It defines the scale
of the diagram, and all axes that are associated with it. This makes implementing
diagram subclasses (types) much easier, since the drawing code can delegate the
complete coordinate calculation work to the coordinate plane.

• Each coordinate plane can have one or more diagram associated to it. Those
diagrams will share the scale provided by the plane. A chart can also have more than
one coordinate plane. This makes it possible to have multiple diagrams (e.g a line
and a bar chart) using the same or different scales and displayed next to, or on top of
each other in the same chart.

• In order to share an axis among two planes (and also diagrams) we just need to add
it to both diagrams. The Chart layouting engine will take care of adjusting positions
accordingly.

A chart can also have a number of optional components such as Legends, Headers/
Footers or custom KDChart::Area subclasses that implement user-defined elements.
The API for manipulating these is similar for all of them.

For example, in order to add an additional header you can use code like this:

HeaderFooter * additionalHeader = new HeaderFooter;
additionalHeader->setPosition(NorthWest);
chart->addHeaderFooter(additionalHeader);

In the next section, we will explain further how ownership of such components is
maintained.

Finally, and concluding this overview, all classes in the KD Chart 2 API are in the
"KDChart" namespace, to allow concise class names, while still avoiding name clashes.
Unless you prefer to use the "KDChart::" prefix on all class names in your code, you
can add the following line at the top of your implementation files, to make all names in
the "KDChart" namespace available in that file:

using namespace KDChart;

Like Qt, KD Chart provides STL-style forwarding headers, allowing you to omit the
".h" suffix when including headers. To bring the bar diagram header into your
implementation file, you could therefore write:

#include <KDChartBarDiagram>

4

or
#include <KDChartBarDiagram.h>

Note

File names of header and implementation files all have the "KDChart"
prefix in the name. The definition of KDChart::BarDiagram is thus
located in the file KDChartBarDiagram.h.

KD Chart and Interview
KD Chart 2.0 follows the Interview model/view paradigm introduced by Qt 4:

Any KDChart::AbstractDiagram subclass (which in turn inherits
QAbstractItemView) can display data originating from any QAbstractItemModel
object. In order to use your data with KD Chart diagrams, you need to either use one of
Qt's built-in models to manage it, or provide the QAbstractItemModel interface on
top of your already existing data storage by implementing your own model that talks to
that underlying storage.

KDChart::Widget is a convenience class that provides a simpler, but less flexible way
of displaying data in a chart. It stores the data it displays itself, and thus does not need a
QAbstractItemModel. It should be sufficient for many basic charting needs but it is
not meant to handle very large amounts of data or to make use of user-supplied chart
types.

KDChart::Widget is provided in order to get started quickly without having to master
the complexities of the new Interview framework in Qt 4. We would still advise to use
KDChart::Chart so that you can make use of all the benefits that Interview brings you
once you have a good understanding of it.

In order to understand the relationship between KDChart::View and
KDChart::Widget better, compare for example KDChart::Chart and
KDChart::Widget to QListView and QListWidget in the Qt 4 documentation. You
will clearly notice the similarities.

Code Sample
Let us make this more concrete by looking at the following lines of code where we are
using QStandardItemModel to store the data which will be displayed by the diagram
in a KDChart::Chart widget.

// set up your model
m_model.insertRows(0, 2, QModelIndex());
m_model.insertColumns(0, 3, QModelIndex());

5

for (int row = 0; row < 3; ++row) {
for (int column = 0; column < 3; ++column) {

QModelIndex index =
m_model.index(row, column, QModelIndex());
m_model.setData(index, QVariant(row+1 * column));

}
}

In order to assign the model above to your diagram and display it you would proceed as
follow:

KDChart::BarDiagram* diagram = new KDChart::BarDiagram;
diagram->setModel(&m_model);
m_chart.coordinatePlane()->replaceDiagram(diagram);

Using KDChartWidget we would use code as follow:

KDChartWidget widget;
QVector< double > vec0, vec1;
vec0 << -5 << -4 << -3 << -2 << -1 << 0 ...;
vec1 << 25 << 16 << 9 << 4 << 1 << 0 ...;
widget.setDataset(0, vec0, "Linear");
widget.setDataset(1, vec1, "Quadratic");
widget.show();

We recommend you to read KDChartChart.h and KDChartWidget.h to learn more
about those classes and what they can do. Also compile and run the complete examples
that describe very simply the two ways you can use to display a Chart.

Attribute sets
The various components of a chart such as legends or axes have attribute sets associated
with them that define the way they are laid out and painted. For example, both the chart
itself and all areas have a set of KDChart::BackgroundAttributes, which control
whether there should be a background pixmap, or a solid background color. Other
attribute sets include frame attributes or grid attributes. The default attributes provide
reasonable, unintrusive settings, such as no visible background and no visible frame.

These attribute sets are passed by value, they are intended to be used much like Qt's
QPen or QBrush. As shown below:

Code Sample

KDChart::TextAttributes ta;
ta.setPen(Qt::red);
ta.setFont(QFont("Helvetica"));
chart->legend()->setTextAttributes(ta);

6

All attribute sets can be set per cell, per column or per modelindex, and only be queried
per cell. Access at the cell level only ensures that the proper fallback hierarchy can be
observed. If there is a value set at cell level, it will be used. Otherwise, the dataset
(column) level is checked. If nothing was found at the dataset level, either the model
wide setting is used or if there is none either, the default values will be applied. All of
this happens automatically, so that the code using these values only has to ask the cell
for its attributes, and will get the correct values. This avoids duplication of the fallback
logic in numerous places in the library, thus avoiding unnecessary and expensive error
handling.

When using attributes sets, you need to be aware of this fallback hierarchy, because e.g.
per-cell changes will hide per-column changes. (see files /src/KDChart*Attributes.h)

Memory Management
As a general rule, everything in a KDChart::Chart is owned by the chart. Manipulation
of the built-in components of a chart, such as for example a legend, happens through
mutable pointers provided by the view, but those components can also be replaced.

Code Sample
Let us make this more concrete by looking at the following lines of code.

// set the built-in (default) legend visible
m_chart->legend()->setPosition(North);

// replace the default legend with a custom one
//the chart view will take ownership of the allocated
//memory and free the old legend
KDChart::Legend *myLegend =
m_chart->replaceLegend(new Legend);

Similarly, inserting new components into the view transfers ownership to the chart.
Notice that the same procedure has to be applied for a diagram, too.

// add an additional legend, chart takes ownership
chart->addLegend(Legend);

Removing a component does not de-allocate it. If you "take" a component from a chart
or diagram, you are responsible for freeing it as appropriate.

(see files /src/{KDChartChart.h, KDChartLegend.h})

7

Notice how this pointer-based access to the components of a chart is different from the
value-based usage of the attribute classes; the latter can be copied around freely, and are
meant to be transient in your code; they will be copied internally as necessary. The
reason for the difference, of course, is polymorphism.

What's Next
Basic steps: Create a Chart or a Widget.

8

Chapter 3. Basic steps: Create a Chart
As described in the previous chapter, there are two ways to create a chart:

• KDChart::Widget is providing a limited set of functions as listed in
KDChartWidget.h. Its purpose is to provide a convenient and simple way of
displaying a chart for people who do not want to learn about the new Qt Interview
system, or who do not care about more complicated details like the Coordinate Plane
and other classes provided by the KD Chart 2 API.

• The purpose of KDChart::Chart is to give the user access to the full power of both
the new Qt and the new KD Chart.

Basically, KDChart::Widget has been designed for beginners, while
KDChart::Chart is designed for experienced users and/or users who need more
features and flexibility. Once again, we recommend you to check out both interfaces of
those classes in order to give yourself an idea about which one of the classes matches
your needs better. (See KDChartWidget.h and KDChartChart.h).

Prerequisites
As described above (Section KD Chart and Interview), a prerequisite for using the full
KD Chart API is that the data to be charted are made available through a class
implementing the QAbstractItemModel interface. Before looking at some code, let us
show you a few top-level classes of the KD Chart 2 API:

• The "chart" is the central widget acting as a container for all the charting elements,
including the diagrams themselves, its class is called KDChart::Chart.

A "chart" can hold several coordinate planes (Cartesian and polar coordinates are
supported at the moment) each of which can hold several diagrams.

• The "coordinate plane" (often called the "plane") represents the entity that is
responsible for mapping the values to positions on the widget. The plane is also
showing the (sub-)grid lines. There can be several planes per chart.

• The "diagram" is the actual plot (bars, lines and other chart types) representing the
data. There can be several diagrams per coordinate plane.

The Procedure

9

Let us go through the general procedure for creating a chart, without drilling down into
the details too much at this point. We will then build a complete example and create a
small application displaying a chart using KDChartWidget and KDChart::Chart
respectively.

First of all, we need to include the appropriate headers, and bring in the "KDChart"
namespace:

#include <KDChartChart>
#include <KDChartLineDiagram>
using namespace KDChart;

//Add the widget to your layout like any other QWidget:
QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m_chart = new Chart();
chartLayout->addWidget(m_chart);

In this example, we will create a single line diagram, and use the default Cartesian
coordinate plane, which is already contained in an empty Chart object.

// Create a line diagram and associate the data model to it
m_lines = new LineDiagram();
m_lines->setModel(&m_model);

// Replace the default diagram of the default coordinate
// plane with your newly created one.
// Note that the plane takes ownership of the diagram,
// so you are not allowed to delete it.
m_chart->coordinatePlane()->replaceDiagram(m_lines);

Adding elements such as axes or legends is straightforward as well:

CartesianAxis *yAxis = new CartesianAxis (m_lines);
yAxis->setPosition (KDChart::CartesianAxis::Left);

// the diagram takes ownership of the Axis
m_lines->addAxis(yAxis);

legend = new Legend(m_lines, m_chart);
m_chart->addLegend(legend);

You can adjust and fine-tune various aspects of the diagrams, planes, legends, etc...

Much like Qt itself, KD Chart uses a value-based approach to these attributes. In the
case of diagrams, most aspects can be adjusted at different levels of granularity. The
QPen that is used for drawing datasets (lines, bars, etc...) can be set either for one data
point within a dataset, for a dataset or for the whole diagram. See the file
KDChartAbstractDiagram.h:

void setPen(const QModelIndex& index, const QPen& pen);
void setPen(int dataset, const QPen& pen);

10

void setPen(const QPen& pen);

To use a dark gray color for all lines in your example chart, you would write:

QPen pen;
pen.setColor(Qt::darkGray);
pen.setWidth(1);
m_lines->setPen(pen);

Attributes that form logical groupings are combined into collection classes, such as
GridAttributes, DataValueAttributes, TextAttributes, etc....

This makes it possible to keep sets of such properties around and swap them in one step,
based on program state. However, you might often want to adjust just one or a few of
the default settings, rather than specifying a complete new set. Thus in most cases, using
the copy constructor of the settings class might be appropriate, so in order to use a
special font for drawing a legend, for example, you would just write:

TextAttributes ta(legend->textAttributes());
ta.setFont(myfont);
legend->setTextAttributes(ta);

We will continue with more examples and more detailed information about all those
points in the next sections and chapters. Also, we recommend you to check out and run
the examples shipped together with your KD Chart package.

Two Ways To Your Chart
We will now go through the basic steps of creating a simple chart widget, first using
KDChart::Widget and then KDChart::Chart. This will give us an overview about
how to proceed in both cases.

Widget Example
We recommend you to read, compile and run the following example. It is available at
the following location of your KD Chart installation: examples/Widget/Simple.

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.

11

**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#include <QApplication>
#include <KDChartWidget>

30 int main(int argc, char** argv) {
QApplication app(argc, argv);

KDChart::Widget widget;
widget.resize(600, 600);

35
QVector< double > vec0, vec1, vec2;

vec0 << -5 << -4 << -3 << -2 << -1 << 0
<< 1 << 2 << 3 << 4 << 5;

40 vec1 << 25 << 16 << 9 << 4 << 1 << 0
<< 1 << 4 << 9 << 16 << 25;

vec2 << -125 << -64 << -27 << -8 << -1 << 0
<< 1 << 8 << 27 << 64 << 125;

45 widget.setDataset(0, vec0, "Linear");
widget.setDataset(1, vec1, "Quadratic");
widget.setDataset(2, vec2, "Cubic");

widget.show();
50

return app.exec();
}

The result of the code above will display the simple widget presented in the screenshot
below.

As you can see, the code is straightforward:

• Include the headers and bring in the Chart namespace.

• Declare your KDChartWidget

• Use a QVector to store the data to be displayed.

• Assign the stored data to the widget, using one of the available setDataset()
methods.

12

Figure 3.1. A Simple Widget

Of course, it is possible to add new elements like Title, Headers, Footers, Legends, or
Axes to this simple widget as we will see later in greater detail. Notice also that the
default diagram displayed by KDChartWidget is a KDChartLineDiagram. In the
following example, we will look at how to display a Chart widget using
KDChart::Chart.

Chart Example
We recommend you to read, compile and run the following example. It is available at
the following location of your KD Chart installation: /examples/Bars/Simple

1
#include <QtGui>
#include <KDChartChart>
#include <KDChartBarDiagram>

5

class ChartWidget : public QWidget {
Q_OBJECT

public:
10 explicit ChartWidget(QWidget* parent=0)

: QWidget(parent)
{

m_model.insertRows(0, 2, QModelIndex());
15 m_model.insertColumns(0, 3, QModelIndex());

for (int row = 0; row < 3; ++row) {
for (int column = 0; column < 3; ++column) {

QModelIndex index = m_model.index(row, column, QModelIndex());
m_model.setData(index, QVariant(row+1 * column));

20 }
}

KDChart::BarDiagram* diagram = new KDChart::BarDiagram;

13

diagram->setModel(&m_model);
25

m_chart.coordinatePlane()->replaceDiagram(diagram);

QVBoxLayout* l = new QVBoxLayout(this);
l->addWidget(&m_chart);

30 setLayout(l);
}

private:
KDChart::Chart m_chart;

35 QStandardItemModel m_model;
};

int main(int argc, char** argv) {
QApplication app(argc, argv);

40
ChartWidget w;
w.show();

return app.exec();
45 }

#include "main.moc"

In this example, we are making use of QStandardItemModel in order to insert and
store the data to be displayed by the diagram. We are also implicitly using a
KDChartBarDiagram to which we assign the model. See below the resulting chart
widget created by this example.

Figure 3.2. A Simple Chart

14

We can of course add more elements to this chart and change its default attributes as
described above.

We will see in more detail how to configure those attributes (Pen, Color, etc ...)and add
the various elements (Axes, Legend, Headers etc...) later.

What's Next
In the next chapter, we will describe the different available chart types (diagrams) and
their coordinate planes. For each chart type, we will look at the attributes available for
this particular type, and give you a few examples.

15

Chapter 4. Planes and Diagrams
At the moment, KD Chart supports two types of planes in order to display the different
types of diagrams it supports.

• A Cartesian coordinate plane, determined by a horizontal and a vertical axis, often
called the x axis and y axis.

• A Polar coordinate plane which makes use of the radius and the polar angle which
defines the position of a point on a plane.

This chapter tells you how to change the chart type from the default to any one of the
other types. All of the chart types provided by KD Chart are presented here with the
help of some sample code and/or small programs and their screenshots.

It will also give us an idea about which chart type could be appropriate for a specific
purpose, and provides information about the features that are available for each type of
chart. Let us first go through some important concept concerning the planes and their
relation to the diagrams and the chart view itself.

Each coordinate plane can have one or more diagram associated to it. Those diagrams
will share the scale provided by the plane. A chart can also have more than one
coordinate plane. This makes it possible to have multiple diagrams using different scales
and displayed next to, or on top of each other in the same chart.

Note

There are two ways in which planes can be caused to interact in where
they are positionned layouting wise: The first is the reference plane.

By using
AbstractCoordinatePlane::setReferenceCoordinatePlane()
the user force the calling plane to be layouted in the same cell in as the
plane it is referenced too (overLaying).

Also when planes share an axis they will be layed out in relation to each
other as suggested by the position of the axis. If, for example Plane1 and
Plane2 share an axis at position Left, that will result in the layout: Axis
Plane1 Plane 2, vertically. If Plane1 also happens to be Plane2's reference
plane, both planes are drawn over each other.

The reference plane concept allows two planes to share the same space
even if none has axis, and in case there are shared axis, it is used to decide
whether the planes should be painted on top of each other or layed out
vertically or horizontally next to each other.

The above concept is illustrated in examples/

16

SharedAbscissa/OverlayedDiagrams and examples/
SharedAbscissa/SeparateDiagrams, we recommend you to study
those examples.

Cartesian Coordinate Planes
KD Chart uses the Cartesian coordinate system, and in particular its
KDChart::CartesianCoordinatePlane class for displaying chart types such as
lines, bars, points, etc.

In this section, we will describe and present all of the chart types using the default
Cartesian coordinate plane.

In general, in order to implement a particular type of chart, just create an object of this
type by calling KDChart[type]Diagram, or if your are using KDChartWidget, call its
setType() method and specify the appropriate chart type (e.g. Widget::Bar,
Widget::Line, etc.)

Bar Charts

Tip

Bar charts are the most common type of charts and can be used for
visualizing almost any kind of data. Like the Line Charts, the bar charts
can be the ideal choice to compare multiple series of data.

A good example for using a bar chart would be a comparison of the sales
figures in different departments, perhaps accompanied by a High/Low
Chart showing the key figures of each day.

Your Bar Chart can be configured with the following (sub-)types as described in detail
in the following sections:

• Normal

• Stacked

• Percent

Normal Bar Charts

Tip

17

In a normal bar chart, each individual value is displayed as a bar by itself.
This flexibility allows you to compare both the values in one series, and
values of different series.

Figure 4.1. A Normal Bar Chart

KD Chart's default type is the normal bar chart, so no method needs to be called in order
to get one when using KDChartBarDiagram. After displaying another sub type, you
can return to the normal one by calling setType(Normal).

Stacked Bar Charts

Tip

Stacked bar charts focus on comparing the sums of the individual values in
each data series, but also show how much each individual value
contributes to its sum.

Figure 4.2. A Stacked Bar Chart

18

Stacked mode for bar charts is activated by calling the KDChartBarDiagram function
setType(Stacked).

Percent Bar Charts

Tip

Unlike stacked bar charts, percent bar charts are not suitable for comparing
the sums of the data series, but rather focus on the respective contributions
of their individual values.

Figure 4.3. A Percent Bar Chart

19

Percent: Percentage mode for bar charts is activated by calling the
KDChartBarDiagram function setType(Percent).

Note

Three-dimensional look of the bars does not require a separate diagram
type; you can enable it for all types (Normal, Stacked, and Percent) by
setting its ThreeD attributes; we will describe this in the "Bars Attributes"
section further on.

Code Sample
For now, let us make the above description more concrete by looking at the following
code sample based on the Simple Widget example you have already seen. In this
example, we show you how to configure your bar diagram and change its attributes
when working with a KDChartWidget.

First, include the appropriate headers and bring in the "KDChart" namespace:

#include <QApplication>
#include <KDChartWidget>
#include <KDChartBarDiagram>
#include <QPen>

using namespace KDChart;

We need to include KDChartBarDiagram in order to be able to configure some of its
attributes as we will see later.

int main(int argc, char** argv) {
QApplication app(argc, argv);
Widget widget;
// our widget can be configured
// as any Qt Widget
widget.resize(600, 600);
// store the data and assign it
QVector< double > vec0, vec1;
vec0 << 5 << 4 << 3 << 2 << 1 << 0

<< 1 << 2 << 3 << 4 << 5;
vec1 << 25 << 16 << 9 << 4 << 1 << 0

<< 1 << 4 << 9 << 16 << 25;
widget.setDataset(0, vec0, "vec0");
widget.setDataset(1, vec1, "vec1");

We want to change the default line chart type to a bar chart type. In this case, we also
want to display it in stacked mode. KDChartWidget with its setType and
setSubType methods allow us to achieve that in a very simple way.

widget.setType(Widget::Bar , Widget::Stacked);

20

The default type being Normal type for the widget, we need to implicitely pass the
second parameter when calling KDChartWidget::setType() We can also change the
sub type of our bar chart later, e.g. by calling setSubType(Widget::Percent).

//Configure a pen and draw a line
//surrounding the bars
QPen pen;
pen.setWidth(2);
pen.setColor(Qt::darkGray);
// call your diagram and set the new pen
widget.barDiagram()->setPen(pen);

In the above code, our intention is to draw a grey line around the bars to make them
look nicer. This technique is called configuring the attributes in a diagram. To do so, we
configure a QPen and then assign it to our diagram. KDChartWidget::barDiagram()
lets get a pointer to our widget diagram. As you can see, it is very easy to assign a new
pen to our diagram by calling the diagram KDChartAbstractDiagram::setPen()
method.

//Set up your ThreeDAttributes
//display in ThreeD mode
ThreeDBarAttributes td;
td.setDepth(15);
td.setEnabled(true);
widget.barDiagram()->setThreeDBarAttributes(td);

We want our bar chart to be displayed in 3D mode and need to configure some
ThreeDBarAttributes and assign them to our diagram. Here we are configuring the
depth of the 3D bars and enable 3D mode. Depth is an attribute only available to bar
charts, and its setter and getter methods are implemented in the
KDChartThreeDBarAttributes, whereas the
KDChartAbstractThreeDAttributes::setEnabled() is a generic attribute
available to all chart types. Both of those attributes are made available at different levels
in order to provide a better attribute structure.

widget.show();

return app.exec();
}

See the screenshot below to view the resulting chart displayed by the code shown above.

Figure 4.4. A Simple Bar ChartWidget

21

This example can be compiled and run from the following location of your KD Chart
installation examples/Widget/Parameters

Note

Configuring the attributes for a KDChartBarDiagram making use of a
KDChart::Chart is done in the same way as for a KDChartWidget. You
just need to assign the configured attributes to your bar diagram and assign
it to the chart by calling KDChart::Chart::replaceDiagram().

Bars Attributes
By "Bars attributes" we are talking about all parameters that can be configured and set
by the user and which are specifics to the Bar Chart type. The "getters" and "setters" for
those attributes can be consulted by looking at KDChartBarAttributes.h to get an
idea about what can be configured there.

Note

KD Chart 2.0 API separates the attributes specifics to a chart type itself
and the generic attributes which are common to all chart types as for
example the setters and getters for a brush or a pen and that are accessible
from the KDChartAbstractDiagram interface.

All those attributes have a reasonnable default value that can simply be modified by the
user by calling one of the diagram set function implemented on this purpose
KDChartBarDiagram::setBarAttributes() or for example (to change the default
Pen) directly by calling the KDChartAbstractDiagram::setPen() method.

22

The procedure is straight forward on both cases. Let us discuss the types specifics
attributes first:

• Create a KDChart::BarAttributes object by calling
KDChartBarDiagram::barAttributes.

• Configure this object using the setters available.

• Assign it to your Diagram with the help of one of the setters available in
KDChart::BarDiagram. All the attributes can be configured to be applied for the
whole diagram, for a column, or at a specified index (QModelIndex).

KD Chart 2.0 supports the following attributes for the Bar chart type. Each of those
attributes can be set and retrieved the way we describe it in our example below:

• BarWidth: Specifies the width of the bars

• GroupGapFactor: Configure the gap between groups of bars.

• BarGapFactor: Configure the gap between Bars within a group

• DrawSolidExcessArrow: Specify whether the arrows showing excess values should
be drawn solidly or split.

Bar Attributes Sample
Let us make this more concrete by looking at the following sample code that describes
the above process. We recommand you to compile and run the following example which
is located in the examples/Bars/Parameters directory of your KD Chart
installation.

First of all we are including the header files we need and bring KD Chart namespace.

#include <QtGui>
#include <KDChartChart>
#include <KDChartBarDiagram>
#include <KDChartDataValueAttributes>

using namespace KDChart;

We have included KDChartDataValueAttributes to be able to display our data
values. Those attributes are of course used by all types of charts and are not specifical to
the Bar diagrams.

In this example we are using a KDChart::Chart class as well as a

23

QStandardItemModel in order to store the data which will be assigned to our diagram

class ChartWidget : public QWidget {
Q_OBJECT
public:

explicit ChartWidget(QWidget* parent=0)
: QWidget(parent)
{

m_model.insertRows(0, 2, QModelIndex());
m_model.insertColumns(0, 3, QModelIndex());
for (int row = 0; row < 3; ++row) {

for (int column = 0; column < 3; ++column) {
QModelIndex index = m_model.index(row, column, QModelIndex());
m_model.setData(index, QVariant(row+1 * column));

}
}

BarDiagram* diagram = new KDChart::BarDiagram;
diagram->setModel(&m_model);

After having store our data into the model, we create a diagram, in this case, we want to
display a KDChartBarDiagram and assing the model to our diagram. The procedure is
of course similar for all types of diagrams.

We are no ready to configure our bar specifics attributes using a
KDChartBarAttributes to do so.

BarAttributes ba;
//set the bar width and
//implicitely enable it
ba.setFixedBarWidth(500);
ba.setUseFixedBarWidth(true);
//configure gab between values
//and blocks
ba.setGroupGapFactor(0.50);
ba.setBarGapFactor(0.125);

//assign to the diagram
diagram->setBarAttributes(ba);

We want to configure our bars width so that they get displayed a bit larger. The Width
of a bar is calculated automatically depending on the gaps between each bar and the
gaps between groups of bars as well as the space available horizontally in the plane. So
those values interact with each other so that your bars does not exceed the plane surface
horizontally. Here we are increasing the value of my bars width and at the same time set
some lower values for the gaps. Which will give us larger bars

Note

After having configured our attributes we need to assign the
BarAttributes object to the diagram. This can be done for the whole
diagram, at a specific index or for a column. See KDChartBarDiagram.h
and look at the methods available there to find out those setters and
getters.

24

We will now display the data values related to each bar making use of KD Chart 2.0
API KDChartDataValueAttributes. Those attributes are not specifics to the Bar
Chart types but can be used by any type of charts. The procedure is very similar.

// display the values
DataValueAttributes dva;
TextAttributes ta = dva.textAttributes();
//rotate if you wish
//ta.setRotation(0);
ta.setFont(QFont("Comic", 9));
ta .setPen(QPen(QColor(Qt::darkGreen)));
ta.setVisible(true);
dva.setTextAttributes(ta);
dva.setVisible(true);
diagram->setDataValueAttributes(dva);

We could have displayed the data values without caring about settings its
KDChartTextAttributes, but we wanted to do so in order to demonstrate this feature
too. Notice that you have to implicitely enable your attributes (DataValue and Text) by
calling their setVisible() methods. After it is configured as we want it is just to
assign to the diagram as for all other attributes.

Finally I want to paint a ligne around one of the datasets bars. In order to keep the
attention of the public on this specific set of data. To do so I need to change the default
pen used by my bars for this data set exclusively. Of course we could also have changed
the pen for all datasets or for a specifical index or value.

//draw a surrounding line around bars
QPen linePen;
linePen.setColor(Qt::magenta);
linePen.setWidth(4);
linePen.setStyle(Qt::DotLine);
//draw only around a dataset
//to draw around all the bars
// call setPen(myPen);
diagram->setPen(1, linePen);

Note

The Pen and the Brush setters and getters are implemented at a lower level
in our KDChartAbstractDiagram class for a cleaner code structure.
Those methods are of course used by all types of diagram and their
configuration is very simple and straight forward as you can see in the
above sample code. Create a Pen, configure it, call one of the setters
methods available (See KDChartAbstractDiagram.h about those
methods).

Our attribute having been configured and assigned we just need to assign the Bar
diagram to our chart and conclude the implementation.

25

m_chart.coordinatePlane()->replaceDiagram(diagram);

QVBoxLayout* l = new QVBoxLayout(this);
l->addWidget(&m_chart);
setLayout(l);

}

private:
Chart m_chart;
QStandardItemModel m_model;

};

int main(int argc, char** argv) {
QApplication app(argc, argv);

ChartWidget w;
w.show();

return app.exec();
}

#include "main.moc"

The above procedure can be applied to any of the supported attributes relative to the
chart types. The resulting display of the code we have gone through can be seen in the
following screen-shot. We also recommend you to compile and run the example related
to this section and located in the examples/Bars/Parameters directory of your KD
Chart installation.

Figure 4.5. Bar with Configured Attributes

The subtype of a bar chart (Normal, Stacked or Percent) is not set via its attribute class,
but directly by using the diagram KDChartBarDiagram::setType method.

Note

26

ThreeDAttibutes for the different chart types are implemented has an own
class, the same way as for the other attributes. We will talk more in details
about KD Chart 2.0 ThreeD features in the ThreeD section, Chapter 5 -
Customizing your Chart.

Tips and Tricks
In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

A complete Bar Example
In the following implementation we want to be able to:

• Display the data values.

• Change the bar chart subtype (Normal, percent, Stacked).

• Select a column and mark it by changing the generic pen attributes.

• Display in ThreeD mode and change the Bars depth dynamically.

• Change the Bars width dynamically.

To do so we will need to use several types of attributes. Generics one available to all
chart types (e.g KDChartAbstractDiagram::setPen(),
KDCHartDataValueAttributes and KDChartTextAttributes as well as typical
bar attributes only applyable to the Bar types as
KDChartBarAttributes::setWidth() or KDChartThreeDBarAttributes

We are making use of a KDChart::Chart class and also of an home made
TableModel for the convenience and derived from QAbstractTableModel.

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This allows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model data files.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the examples/tools directory of your KD Chart installation.

27

Let us concentrate on our Bar chart implementation for now and consult the following
files: other needed files like the ui, pro , qrc ,CSV and main.cpp files can be consulted
from the examples/Bars/Advanced directory of your installation.

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

30 #include "ui_mainwindow.h"
#include <TableModel.h>

namespace KDChart {
class Chart;

35 class BarDiagram;
}

class MainWindow : public QWidget, private Ui::MainWindow
{

40 Q_OBJECT

public:
MainWindow(QWidget* parent = 0);

45 private slots:

void on_barTypeCB_currentIndexChanged(const QString & text);
void on_paintValuesCB_toggled(bool checked);
void on_paintThreeDBarsCB_toggled(bool checked);

50 void on_markColumnCB_toggled(bool checked);
void on_markColumnSB_valueChanged(int i);
void on_threeDDepthCB_toggled(bool checked);
void on_depthSB_valueChanged(int i);
void on_widthCB_toggled(bool checked);

55 void on_widthSB_valueChanged(int i);
void on_fixPlaneSizeCB_toggled(bool checked);

private:
KDChart::Chart* m_chart;

60 KDChart::BarDiagram* m_bars;
TableModel m_model;

};

28

65 #endif /* MAINWINDOW_H */

In the above code we bring up the KDChart namespace as usual and declare our slots.
The prupose is to let the user configure its bar chart attributes manually . As you can see
we are using a KDChart::Chart object (m_chart), a KDChartBarDiagram object (
m_bars), and our home made TableModel (m_model).

The implementation is also straight forward as we will see below:

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#include "mainwindow.h"

#include <KDChartChart>
30 #include <KDChartDatasetProxyModel>

#include <KDChartAbstractCoordinatePlane>
#include <KDChartBarDiagram>
#include <KDChartTextAttributes>
#include <KDChartDataValueAttributes>

35 #include <KDChartThreeDBarAttributes>

#include <QDebug>
#include <QPainter>

40
using namespace KDChart;

MainWindow::MainWindow(QWidget* parent) :
QWidget(parent)

45 {
setupUi(this);

QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m_chart = new Chart();

50 chartLayout->addWidget(m_chart);

m_model.loadFromCSV(":/data");

// Set up the diagram

29

55 m_bars = new BarDiagram();
m_bars->setModel(&m_model);

QPen pen(m_bars->pen());
pen.setColor(Qt::darkGray);

60 pen.setWidth(1);
m_bars->setPen(pen);
m_chart->coordinatePlane()->replaceDiagram(m_bars);
m_chart->setGlobalLeadingTop(20);

}
65

void MainWindow::on_barTypeCB_currentIndexChanged(const QString & text)
{

70 if (text == "Normal")
m_bars->setType(BarDiagram::Normal);

else if (text == "Stacked")
m_bars->setType(BarDiagram::Stacked);

else if (text == "Percent")
75 m_bars->setType(BarDiagram::Percent);

else
qWarning (" Does not match any type");

m_chart->update();
80 }

void MainWindow::on_paintValuesCB_toggled(bool checked)
{

85 Q_UNUSED(checked);
// We set the DataValueAttributes on a per-column basis here,
// because we want the texts to be printed in different
// colours - according to their respective dataset's colour.
const QFont font(QFont("Comic", 10));

90 const int colCount = m_bars->model()->columnCount();
for (int iColumn = 0; iColumn<colCount; ++iColumn) {

QBrush brush(m_bars->brush(iColumn));
DataValueAttributes a(m_bars->dataValueAttributes(iColumn));
TextAttributes ta(a.textAttributes());

95 ta.setRotation(0);
ta.setFont(font);
ta .setPen(QPen(brush.color()));
if (checked)

ta.setVisible(true);
100 else

ta.setVisible(false);

a.setTextAttributes(ta);
a.setVisible(true);

105 m_bars->setDataValueAttributes(iColumn, a);
}

m_chart->update();
}

110

void MainWindow::on_paintThreeDBarsCB_toggled(bool checked)
{

ThreeDBarAttributes td(m_bars->threeDBarAttributes());
115 double defaultDepth = td.depth();

if (checked) {
td.setEnabled(true);
if (threeDDepthCB->isChecked())

td.setDepth(depthSB->value());
120 else

td.setDepth(defaultDepth);
} else {

td.setEnabled(false);
}

30

125 m_bars->setThreeDBarAttributes(td);
m_chart->update();

}

void MainWindow::on_markColumnCB_toggled(bool checked)
130 {

const int column = markColumnSB->value();
QPen pen(m_bars->pen(column));
if (checked) {

pen.setColor(Qt::yellow);
135 pen.setStyle(Qt::DashLine);

pen.setWidth(3);
m_bars->setPen(column, pen);

} else {
pen.setColor(Qt::darkGray);

140 pen.setStyle(Qt::SolidLine);
pen.setWidth(1);
m_bars->setPen(column, pen);

}
m_chart->update();

145 }

void MainWindow::on_depthSB_valueChanged(int i)
{

Q_UNUSED(i);
150

if (threeDDepthCB->isChecked() && paintThreeDBarsCB->isChecked())
on_paintThreeDBarsCB_toggled(true);

}

155 void MainWindow::on_threeDDepthCB_toggled(bool checked)
{

Q_UNUSED(checked);

if (paintThreeDBarsCB->isChecked())
160 on_paintThreeDBarsCB_toggled(true);

}

void MainWindow::on_markColumnSB_valueChanged(int i)
{

165 QPen pen(m_bars->pen(i));
markColumnCB->setChecked(pen.color() == Qt::yellow);

}

void MainWindow::on_widthSB_valueChanged(int value)
170 {

if (widthCB->isChecked()) {
BarAttributes ba(m_bars->barAttributes());
ba.setFixedBarWidth(value);
ba.setUseFixedBarWidth(true);

175 m_bars->setBarAttributes(ba);
}
m_chart->update();

}

180 void MainWindow::on_widthCB_toggled(bool checked)
{

if (checked){
on_widthSB_valueChanged(widthSB->value());

}else{
185 BarAttributes ba(m_bars->barAttributes());

ba.setUseFixedBarWidth(false);
m_bars->setBarAttributes(ba);
m_chart->update();

}
190 }

void MainWindow::on_fixPlaneSizeCB_toggled(bool checked)
{

CartesianCoordinatePlane* plane = qobject_cast< CartesianCoordinatePlane* >(m_chart->coordinatePlane());

31

195 if(plane == 0)
return;

plane->setFixedDataCoordinateSpaceRelation(checked);
m_chart->update();

200 }

First of all we are adding our chart to the layout as for any other Qt widget. Load the
data to be display into our model, and assign the model to our bar diagram. We also
want to configure a Pen and surround the displayed bars by a darkGray line to make it
somewhat nicer. Finally we assign the diagram to our chart.

//draw a surrounding line around bars
QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m_chart = new Chart();
chartLayout->addWidget(m_chart);

m_model.loadFromCSV(":/data");

// Set up the diagram
m_bars = new BarDiagram();
m_bars->setModel(&m_model);

QPen pen;
pen.setColor(Qt::darkGray);
pen.setWidth(1);
m_bars->setPen(pen);

m_chart->coordinatePlane()->replaceDiagram(m_bars);

The user should be able to change the default sub-type via a combo box from the GUI.
This can be done by using KDChartBarDiagram::setType() as shown below and by
updating the view.

....
if (text == "Normal")

m_bars->setType(BarDiagram::Normal);
else if (text == "Stacked")

m_bars->setType(BarDiagram::Stacked);
....
m_chart->update();

We set the DataValueAttributes on a per-column basis here, because we want the texts
to be printed in different colours - according to their respective dataset's colour. The
user will be able to display or hide the values.

...
const QFont font(QFont("Comic", 10));
const int colCount = m_bars->model()->columnCount();
for (int iColumn = 0; iColumn<colCount; ++iColumn) {

QBrush brush(m_bars->brush(iColumn));
DataValueAttributes a(m_bars->dataValueAttributes(iColumn));
TextAttributes ta(a.textAttributes());
ta.setRotation(0);

32

ta.setFont(font);
ta .setPen(QPen(brush.color()));
if (checked)
ta.setVisible(true);
else
ta.setVisible(false);

a.setTextAttributes(ta);
a.setVisible(true);
m_bars->setDataValueAttributes(iColumn, a);

}

m_chart->update();
....

As you can see in the above code we are changing the default values for
DataValuesAttributes TextAttributes. Also we allow the usert to display or not
the texts dynamically. see KDChartTextAttributes::setVisible().

In order to be able to display our diagram in threeD mode we need to bring
KDChartThreeDBarAttributes, and configure it. Here we are enabling or disabling
and change its Depth parameter according to the user interaction.

...
ThreeDBarAttributes td(m_bars->threeDBarAttributes());
double defaultDepth = td.depth();
if (checked) {

td.setEnabled(true);
if (threeDDepthCB->isChecked())

td.setDepth(depthSB->value());
else

td.setDepth(defaultDepth);
} else {

td.setEnabled(false);
}
m_bars->setThreeDBarAttributes(td);
m_chart->update();
...

ThreeDBarAttributes are as simple to use as all other Attributes types. Our next lines of
code will make use of the generic KDChartAbstractDiagram::setPen() available
to all diagram types, to allow the user to mark a column or reset it to the original Pen
interactively.

...
const int column = markColumnSB->value();
QPen pen(m_bars->pen(column));
if (checked) {

pen.setColor(Qt::yellow);
pen.setStyle(Qt::DashLine);
pen.setWidth(3);
m_bars->setPen(column, pen);

} else {
pen.setColor(Qt::darkGray);
pen.setStyle(Qt::SolidLine);
pen.setWidth(1);
m_bars->setPen(column, pen);

}
m_chart->update();

33

...

Note

It is important to know that have three levels of precedence when setting
the attributes: Which means that once you have set the attributes for a

• Global: Weak

• Per column: Medium

• Per cell: Strong

the attributes: Which means that once you have set the attributes for a
column or a cell, you will not be able to change those settings by calling
the "global" method to reset it to another value, but instead call the per
column or per index setter. As demonstrated in the above code.

Finally we configure a typical KDChartBarAttributes, the Bar Width, for the user to
be able to change the width of the bars dynamically increasing or decreasing its value
via the Gui.

if (widthCB->isChecked()) {
BarAttributes ba(m_bars->barAttributes());
ba.setFixedBarWidth(value);
ba.setUseFixedBarWidth(true);
m_bars->setBarAttributes(ba);

}
m_chart->update();

Here we are making use of the
KDChartBarAttributes::setUseFixedBarWidth() method to enable or disable
the effect. The Bar Width value being passed by the value of a Spin Box.

See how this widget having some attributes enabled is displayed in the following
screen-shot.

Figure 4.6. A Full featured Bar Chart

34

This example is available to compile and run from the examples/Bars/Advanced
directory in your KD Chart installation. We recommend you to run it.

Line Charts

Tip

Line charts usually show numerical values and their development in time.
Like the Bar Charts they can be used to compare multiple series of data.

An example might be the development of stock values over a longer
period of time or the water level rise on several gauges.

As for Bar types, KD Chart can generate line charts of different kind of line charts.
KDChartLineDiagram supports the following subtypes explained below:

• Normal Line Chart

• Stacked Line Chart

• Percent Line chart

Normal Line Charts

Tip

Normal line charts are the most common type of line charts and are used
when the datasets are compared to each other individually. For example, if
you want to visualize the development of sales figures over time for each

35

department separately, you might have one line per department.

Figure 4.7. A Normal Line Chart

KD Chart draws normal line charts by default when in line chart mode so no method
needs to be called to get one, however after having used your KDChartLineDiagram
to display another line chart subtype you can reset it by calling setType(Normal).

Stacked Line Charts

Tip

Stacked line charts allow you to compare the development of a series of
values summarized over all datasets. You could use this if you are only
interested in the development of total sales figures in your company, but
have the data split up by department.

Figure 4.8. A Stacked Line Chart

36

Stacked mode for line charts is activated by calling the KDChartLineDiagram method
setType(Stacked).

Percent Line Charts

Tip

Percent line charts show how much each value contributes to the total sum,
similar to percent bar charts.

Figure 4.9. A Percent Line Chart

37

Percent: Percentage mode for line charts is activated by calling the
KDChartLineDiagram function setType(Percent).

Note

Three-dimensional look of the lines is no special feature you can enable it
for all types (Normal, Stacked or Percent) by setting its ThreeD
attributes class (see KDChartThreeDLineAttributes.h to consult its
interface). We will describe it more in details in the "Line Attributes"
section further on.

Code Sample
For now let us make the above description more concrete by looking at the following
code sample based on the Simple Widget example we have been demonstrating above
(Chapter 3 - Two Ways - Widget Example). In this example we demonstrate
how to configure your line diagram and change its attributes when working with a
KDChartWidget.

First include the appropriate headers and bring in the "KDChart namespace":

#include <QApplication>
#include <KDChartWidget>
#include <KDChartLineDiagram>
#include <QPen>

using namespace KDChart;

We need to include KDChartLineDiagram in order to be able to configure some of its
attributes as we will see further on.

int main(int argc, char** argv) {
QApplication app(argc, argv);
Widget widget;
// our Widget can be configured
// as any Qt Widget
widget.resize(600, 600);

// store the data and assign it
QVector< double > vec0, vec1;
vec0 << 5 << 1 << 3 << 4 << 1;
vec1 << 3 << 6 << 2 << 4 << 8;
vec2 << 0 << 7 << 1 << 2 << 1;
widget.setDataset(0, vec0, "vec0");
widget.setDataset(1, vec1, "vec1");
widget.setDataset(2, vec2, "vec2");
widget.setSubType(Widget::Percent);

We dont need to change the default chart type as Line Charts is the default . In this case
we also want to display it in percent mode. KDChartWidget with its setSubType

38

method allow us to achieve that the easy way.

widget.setSubType(Widget::Percent);

The default sub-type being Normal for all types of charts we need to call implicitely
KDChartWidget::setSubType() in this case. We can also change the sub-type of
our line chart further on by calling for example setSubType(Widget::Stacked)
or reset its default value by calling setSubType(Widget::Normal).

//Configure a pen and draw
//a dashed line for column 1
QPen pen;
pen.setWidth(3);
pen.setStyle(Qt::DashDotLine);
pen.setColor(Qt::green);
// call your diagram and set the new pen
widget.lineDiagram()->setPen(1 , pen);

In the above code our intention is to draw a new style of line for this specific dataset in
order to keep the attention of the public on it. That is what we call configuring an
attribute. In this case the pen attribute. To do so we configure a QPen and then assign it
to our diagram. KDChartWidget::lineDiagram() allow us to get a pointer to our
widget diagram. As you can see it is very simple to assign a new pen to our diagram by
calling the diagram KDChartAbstractDiagram::setPen() method.

//Display in Area mode
LineAttributes ld;
ld.setDisplayArea(true);
//configure transparency
//it is nicer and let us
//all the area
ld.setTransparency(25);
widget.lineDiagram()->setLineAttributes(ld);

The code above makes use of typical KDChartLineAttributes and let us diplay the
areas as well as set up the color transparency which is very helpfull when displaying a
normal chart type where the areas can hide each other. Finally we conclude our small
example:

widget.show();

return app.exec();
}

See the screen-shot below to view The resulting chart displayed by the above code.

Figure 4.10. A Simple Line ChartWidget

39

This example can be compiled and run from the following location of your KD Chart
installation examples/Lines/SimpleLineWidget

Note

Configuring the attributes for a KDChartLineDiagram making use of a
KDChart::Chart is done the same way as for a KDChartWidget. You
just need to assign the configured attributes to your line diagram and
assign the diagram to the chart by calling
KDChart::Chart::replaceDiagram().

Lines Attributes
There are only a few attributes specific to a line chart as it is using a Pen to draw the
lines. Pen and Brush are generic attributes common to all types of diagrams and are
handled by KDChartAbstractDiagram from which KDChartLineDiagram is
derived indirectly.

However to make it simple for the user we have added some convenient functions to the
KDChartLineAttributes in order to be able to display Areas and set transparency for
all subtypes of a line chart. We will go through those methods further on in our Area
charts section in this Chapter.

KDChartLineDiagram combined with its attributes and methods or combined together
with KDChartMarkerAttributes let us display the line chart subtypes as described
above as well as Area Charts and Point charts the easy way. We will of course present
all those alternatives with some sample code and ready to use examples in the next

40

sections.

The use of LineAttributes is as simple as for the other chart types:

• Create a KDChart::LineAttributes object by calling
KDChartLineDiagram::lineAttributes.

• Configure this object using the setters available.

• Assign it to your Diagram with the help of one of the setters available in
KDChart::LineDiagram. All the attributes can be configured to be applied for the
whole diagram, for a column, or at a specified index (QModelIndex).

KD Chart 2.0 supports the following attributes for the Line chart type. Each of those
attributes can be set and retrieved the way we describe it in our example below:

• MissingValuesPolicy: Specifies how missing values will be shown in a line
diagram.

• Display area: paint the area for a dataset.

• Area transparency: set the transparency for the displayed area color.

Note

All other attributes as ThreeDLineAttributes (specific to line charts), or
MarkerAttributes, DataValueAttributes and TextAttributes ..etc.. available
to all types of charts are of course also available to the line charts types
and sub-types.

Line Attributes Sample
Let us make this more concrete by looking at the following sample code that describes
the above process. We recommand you to compile and run the following example which
is located in the examples/Lines/Parameters directory of your KD Chart
installation.

First of all we are including the header files and bring KD Chart namespace.

#include <QtGui>
#include <KDChartChart>
#include <KDChartLineDiagram>
#include <KDChartDataValueAttributes>

using namespace KDChart;

41

We have included KDChartDataValueAttributes to be able to display our data
values. Those attributes are of course used by all types of charts and are not specifical to
the Line diagram.

In this example we are using a KDChart::Chart class as well as a
QStandardItemModel in order to store the data which will be assigned to our
diagram.

class ChartWidget : public QWidget {
Q_OBJECT
public:

explicit ChartWidget(QWidget* parent=0)
: QWidget(parent)
{

m_model.insertRows(0,5, QModelIndex());
m_model.insertColumns(0,5, QModelIndex());

for(int i = 0; i < 5; ++i) {
for(int j = 0; j < 5; ++j) {

m_model.setData(m_model.index(i,j,QModelIndex()), (double)i*j);
}

}

LineDiagram* diagram = new LineDiagram;
diagram->setModel(&m_model);

After having stored our data into the model, we create a diagram. In this case, we want
to display a KDChartLineDiagram. As always we need to assign the model to our
diagram. This procedure is of course similar for all types of diagrams.

We are now ready to configure our attributes. We want to display the data values and
configure the text and font for those.

// Display values
// 1 - Call the relevant attributes
DataValueAttributes dva(diagram->dataValueAttributes());
// 2 - We want to configure the font and colors
// for the data values text.
TextAttributes ta(dva.textAttributes());
//rotate if you wish
//ta.setRotation(0);
// 3 - Set up your text attributes
ta.setFont(QFont("Comic", 6));
ta .setPen(QPen(QColor(Qt::darkGreen)));
ta.setVisible(true);
// 4 - Assign the text attributes to your
// DataValuesAttributes
dva.setTextAttributes(ta);
dva.setVisible(true);
// 5 - Assign to the diagram
diagram->setDataValueAttributes(dva);

As for all attributes we call them by using the relevant method available from our
diagram interface, here diagram->dataValueAttributes(). The second step is to
set it up with our own values and finally we assign it to our diagram.

42

We could have displayed the data values without caring about settings its
KDChartTextAttributes, but we wanted to do so in order to demonstrate this feature
too. Notice that you have to implicitely enable your attributes (DataValue and Text) by
calling their setVisible() methods before we assign it to the diagram.

Note

After having configured our attributes we need to assign the attributes to
the diagram. This can be done for the whole diagram, at a specific index or
for a column. Look at the attributes interface and look at the methods
available there to find out those setters and getters.

We want to configure the Pen in order to draw a section of a line (dataset) differently.
e.g. We want to focus the attention of the reader on this particular section.

// Draw a the section of a line differently.
// 1 - Retrieve the pen for the dataset and change
// its style.
// This allow us to keep the line original color.
QPen linePen(diagram->pen(1));
linePen.setWidth(3);
linePen.setStyle(Qt::DashLine);
// 2 - Change the Pen for a section within a line
while assigning it to the diagram
diagram->setPen(m_model.index(1, 1, QModelIndex()), linePen);

Of course we could also have changed the pen for a single or all datasets as well. See
how we call the pen for this very dataset before changing its style and width. This is
done to keep its original color for consistancy. Alos

Note

The Pen and the Brush setters and getters are implemented at a lower level
in our KDChartAbstractDiagram class for a cleaner code structure.
Those methods are of course used by all types of diagram and their
configuration is very simple and straight forward as you can see in the
above sample code. Create or get a Pen , configure it, call one of the
setters methods available (See KDChartAbstractDiagram.h about
those methods).

Our attribute having been configured and assigned we just need to assign our line
diagram to our chart and conclude the implementation.

m_chart.coordinatePlane()->replaceDiagram(diagram);

QVBoxLayout* l = new QVBoxLayout(this);
l->addWidget(&m_chart);
setLayout(l);

}

43

private:
Chart m_chart;
QStandardItemModel m_model;

};

int main(int argc, char** argv) {
QApplication app(argc, argv);

ChartWidget w;
w.show();

return app.exec();
}

#include "main.moc"

The above procedure can be applied to any of the supported attributes for all chart types.
The resulting display of the code we have gone through can be seen in the following
screen-shot. We also recommend you to compile and run the example related to this
section and located in the examples/Lines/Parameters directory of your KD Chart
installation.

Figure 4.11. Line With Configured Attributes

The subtype of a line chart (Normal, Stacked or Percent) is not set via its attribute class,
but directly by using the diagram KDChartLineDiagram::setType method.

Note

ThreeDAttibutes for the different chart types are implemented has an own
class, the same way as for the other attributes. We will talk more in details
about KD Chart 2.0 ThreeD features in the ThreeD section, Chapter 5 -
Customizing your Chart.

44

Tips and Tricks
In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

A complete Line Example
In the following implementation we want to be able to:

• Display the data values.

• Change the line chart subtype (Normal, percent, Stacked).

• Display Areas for one or several for one or several dataset(s).

• Run a small animation highlighting the areas one after the other.

To do so we will need to use several types of attributes and methods, as
KDChartAbstractDiagram::setPen(), KDCHartDataValueAttributes and
KDChartTextAttributes.

We are making use of a KDChart::Chart class and also of an home made
TableModel for the convenience and derived from QAbstractTableModel.

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This allows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model data files.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the examples/tools directory of your KD Chart installation.

Let us concentrate on our Line chart implementation for now and consult the following
files: other needed files like the ui, pro , qrc ,CSV and main.cpp files can be consulted
from the examples/Lines/Advanced directory of your installation.

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

45

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

30 #include "ui_mainwindow.h"
#include <TableModel.h>

namespace KDChart {
class Chart;

35 class LineDiagram;
}

class MainWindow : public QWidget, private Ui::MainWindow
{

40 Q_OBJECT

public:
MainWindow(QWidget* parent = 0);

45 private slots:

void on_lineTypeCB_currentIndexChanged(const QString & text);
void on_paintValuesCB_toggled(bool checked);
void on_threeDModeCB_toggled(bool checked);

50 void on_depthSB_valueChanged(int i);
void on_animateAreasCB_toggled(bool checked);
void on_highlightAreaCB_toggled(bool checked);
void on_highlightAreaSB_valueChanged(int i);
void setHighlightArea(int row, int column, int opacity, bool checked, bool doUpdate);

55 void on_trackAreasCB_toggled(bool checked);
void on_trackAreasSB_valueChanged(int i);
void setTrackedArea(int column, bool checked, bool doUpdate);
void slot_timerFired();
void on_reverseHorizontalCB_toggled(bool checked);

60 void on_reverseVerticalCB_toggled(bool checked);

private:
KDChart::Chart* m_chart;
KDChart::LineDiagram* m_lines;

65 TableModel m_model;
int m_curRow;
int m_curColumn;
int m_curOpacity;

};
70

#endif /* MAINWINDOW_H */

75

In the above code we bring up the KDChart namespace as usual and declare our slots.

46

The purpose is to let the user configure its line chart attributes manually . As you can
see we are using a KDChart::Chart object (m_chart), a KDChartLineDiagram object (
m_lines), and our home made TableModel (m_model).

The implementation is also straight forward as we will see below:

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#include "mainwindow.h"

#include <KDChartChart>
30 #include <KDChartLineDiagram>

#include <KDChartTextAttributes>
#include <KDChartDataValueAttributes>
#include <KDChartThreeDLineAttributes>

35
#include <QTimer>

using namespace KDChart;

40 MainWindow::MainWindow(QWidget* parent) :
QWidget(parent)

{
setupUi(this);

45 m_curColumn = -1;
m_curOpacity = 0;

QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m_chart = new Chart();

50 chartLayout->addWidget(m_chart);

m_model.loadFromCSV(":/data");

// Set up the diagram
55 m_lines = new LineDiagram();

m_lines->setModel(&m_model);

CartesianAxis *xAxis = new CartesianAxis(m_lines);
CartesianAxis *yAxis = new CartesianAxis (m_lines);

60 xAxis->setPosition (KDChart::CartesianAxis::Bottom);
yAxis->setPosition (KDChart::CartesianAxis::Left);
m_lines->addAxis(xAxis);

47

m_lines->addAxis(yAxis);

65 m_chart->coordinatePlane()->replaceDiagram(m_lines);
m_chart->setGlobalLeading(20, 20, 20, 20);
// Instantiate the timer
QTimer *timer = new QTimer(this);
connect(timer, SIGNAL(timeout()), this, SLOT(slot_timerFired()));

70 timer->start(30);
}

void MainWindow::on_lineTypeCB_currentIndexChanged(const QString & text)
{

75 if (text == "Normal")
m_lines->setType(LineDiagram::Normal);

else if (text == "Stacked")
m_lines->setType(LineDiagram::Stacked);

else if (text == "Percent")
80 m_lines->setType(LineDiagram::Percent);

else
qWarning (" Does not match any type");

m_chart->update();
85 }

void MainWindow::on_paintValuesCB_toggled(bool checked)
{

const int colCount = m_lines->model()->columnCount(m_lines->rootIndex());
90 for (int iColumn = 0; iColumn<colCount; ++iColumn) {

DataValueAttributes a(m_lines->dataValueAttributes(iColumn));
QBrush brush(m_lines->brush(iColumn));
TextAttributes ta(a.textAttributes());
ta.setRotation(0);

95 ta.setFont(QFont("Comic", 10));
ta.setPen(QPen(brush.color()));

if (checked)
ta.setVisible(true);

100 else
ta.setVisible(false);

a.setVisible(true);
a.setTextAttributes(ta);
m_lines->setDataValueAttributes(iColumn, a);

105 }
m_chart->update();

}

void MainWindow::on_animateAreasCB_toggled(bool checked)
110 {

if(checked){
highlightAreaCB->setCheckState(Qt::Unchecked);
m_curRow = 0;
m_curColumn = 0;

115 }else{
m_curColumn = -1;

}
highlightAreaCB->setEnabled(! checked);
highlightAreaSB->setEnabled(! checked);

120 // un-highlight all previously highlighted columns
const int rowCount = m_lines->model()->rowCount();
const int colCount = m_lines->model()->columnCount();
for (int iColumn = 0; iColumn<colCount; ++iColumn){

setHighlightArea(-1, iColumn, 127, false, false);
125 for (int iRow = 0; iRow<rowCount; ++iRow)

// m_lines->resetLineAttributes(cellIndex);
setHighlightArea(iRow, iColumn, 127, false, false);

}
m_chart->update();

130 m_curOpacity = 0;
}

48

void MainWindow::slot_timerFired()
{

135 if(m_curColumn < 0) return;
m_curOpacity += 8;
if(m_curOpacity > 255){

setHighlightArea(m_curRow, m_curColumn, 127, false, false);
m_curOpacity = 5;

140 ++m_curRow;
if(m_curRow >= m_lines->model()->rowCount(m_lines->rootIndex())){

m_curRow = 0;
++m_curColumn;
if(m_curColumn >= m_lines->model()->columnCount(m_lines->rootIndex()))

145 m_curColumn = 0;
}

}
setHighlightArea(m_curRow, m_curColumn, m_curOpacity, true, true);

}
150

void MainWindow::setHighlightArea(int row, int column, int opacity, bool checked, bool doUpdate)
{

if(row < 0){
// highlight a complete dataset

155 LineAttributes la = m_lines->lineAttributes(column);
if (checked) {

la.setDisplayArea(true);
la.setTransparency(opacity);

} else {
160 la.setDisplayArea(false);

}
m_lines->setLineAttributes(column, la);

}else{
// highlight two segments only

165 if(row){
QModelIndex cellIndex(m_lines->model()->index(row-1, column, m_lines->rootIndex()));
if (checked) {

LineAttributes la(m_lines->lineAttributes(cellIndex));
la.setDisplayArea(true);

170 la.setTransparency(255-opacity);
// set specific line attribute settings for this cell
m_lines->setLineAttributes(cellIndex, la);

} else {
// remove any cell-specific line attribute settings from the indexed cell

175 m_lines->resetLineAttributes(cellIndex);
}

}
if(row < m_lines->model()->rowCount(m_lines->rootIndex())){

QModelIndex cellIndex(m_lines->model()->index(row, column, m_lines->rootIndex()));
180 if (checked) {

LineAttributes la(m_lines->lineAttributes(cellIndex));
la.setDisplayArea(true);
la.setTransparency(opacity);
// set specific line attribute settings for this cell

185 m_lines->setLineAttributes(cellIndex, la);
} else {

// remove any cell-specific line attribute settings from the indexed cell
m_lines->resetLineAttributes(cellIndex);

}
190 }

}
if(doUpdate)

m_chart->update();
}

195
void MainWindow::on_highlightAreaCB_toggled(bool checked)
{

setHighlightArea(-1, highlightAreaSB->value(), 127, checked, true);
}

200
void MainWindow::on_highlightAreaSB_valueChanged(int i)
{

49

Q_UNUSED(i);
if (highlightAreaCB->isChecked())

205 on_highlightAreaCB_toggled(true);
else

on_highlightAreaCB_toggled(false);
}

210 void MainWindow::on_threeDModeCB_toggled(bool checked)
{

ThreeDLineAttributes td(m_lines->threeDLineAttributes());
td.setDepth(depthSB->value());
if (checked)

215 td.setEnabled(true);
else

td.setEnabled(false);

m_lines->setThreeDLineAttributes(td);
220

m_chart->update();
}

void MainWindow::on_depthSB_valueChanged(int i)
225 {

Q_UNUSED(i);
if (threeDModeCB->isChecked())

on_threeDModeCB_toggled(true);
}

230
void MainWindow::on_trackAreasCB_toggled(bool checked)
{

setTrackedArea(trackAreasSB->value(), checked, true);
}

235
void MainWindow::on_trackAreasSB_valueChanged(int i)
{

Q_UNUSED(i);
on_trackAreasCB_toggled(trackAreasCB->isChecked());

240 }

void MainWindow::setTrackedArea(int column, bool checked, bool doUpdate)
{

for(int i = 0; i < m_model.rowCount(m_lines->rootIndex()); ++i) {
245 for(int j = 0; j < m_model.columnCount(m_lines->rootIndex()); ++j) {

QModelIndex cellIndex(m_model.index(i, j, m_lines->rootIndex()));
ValueTrackerAttributes va(m_lines->valueTrackerAttributes(cellIndex));
va.setEnabled(checked && j == column);
va.setAreaBrush(QColor(255, 255, 0, 50));

250 m_lines->setValueTrackerAttributes(cellIndex, va);
}

}
if(doUpdate)

m_chart->update();
255 }

void MainWindow::on_reverseHorizontalCB_toggled(bool checked)
{

static_cast<KDChart::CartesianCoordinatePlane*>(m_chart->coordinatePlane())->setHorizontalRangeReversed(checked);
260 }

void MainWindow::on_reverseVerticalCB_toggled(bool checked)
{

static_cast<KDChart::CartesianCoordinatePlane*>(m_chart->coordinatePlane())->setVerticalRangeReversed(checked);
265 }

First of all we are adding our chart to the layout as for any other Qt widget. Load the
data to be display into our model, and assign the model to our line diagram. We also

50

want to set up a QTimer to be able to run our animation. Finally we assign the diagram
to our chart.

...
QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m_chart = new Chart();
chartLayout->addWidget(m_chart);

m_model.loadFromCSV(":/data");

// Set up the diagram
m_lines = new LineDiagram();
m_lines->setModel(&m_model);
m_chart->coordinatePlane()->replaceDiagram(m_lines);

// Instantiate the timer
QTimer *timer = new QTimer(this);
connect(timer, SIGNAL(timeout()), this, SLOT(slot_timerFired()));
timer->start(40);
...

The user should be able to change the default sub-type via a combo box from the GUI.
This can be done by using KDChartBarDiagram::setType() as shown below and by
updating the view.

....
if (text == "Normal")
m_lines->setType(LineDiagram::Normal);
else if (text == "Stacked")
m_lines->setType(LineDiagram::Stacked);
else if (text == "Percent")
m_lines->setType(LineDiagram::Percent);
....
m_chart->update();

We want the user to be able to display or hide the data values from the GUI, and also
change the default font for our data values labels to make it nicer.

const int colCount = m_lines->model()->columnCount(m_lines->rootIndex());
for (int iColumn = 0; iColumn<colCount; ++iColumn) {

DataValueAttributes a(m_lines->dataValueAttributes(iColumn));
QBrush brush(m_lines->brush(iColumn));
TextAttributes ta(a.textAttributes());
ta.setRotation(0);
ta.setFont(QFont("Comic", 10));
ta.setPen(QPen(brush.color()));

if (checked)
ta.setVisible(true);
else
ta.setVisible(false);
a.setVisible(true);
a.setTextAttributes(ta);
m_lines->setDataValueAttributes(iColumn, a);

}
m_chart->update();

51

In the code above, we make sure our data values labels will be painted using the dataset
default color by retrieving the brush for each dataset and assigning the color of the brush
to the pen.

Note

It is important to know that have three levels of precedence when setting
the attributes: Which means that once you have set the attributes for a

• Global: Weak

• Per column: Medium

• Per cell: Strong

the attributes: Which means that once you have set the attributes for a
column or a cell, you will not be able to change those settings by calling
the "global" method to reset it to another value, but instead call the per
column or per index setter. As demonstrated in the above code.

The user should be able to display the area for one or several dataset.

....
LineAttributes la = m_lines->lineAttributes(
m_lines->model()->index(0, column, m_lines->rootIndex()));
if (checked) {

la.setDisplayArea(true);
la.setTransparency(opacity);

} else {
la.setDisplayArea(false);

}
m_lines->setLineAttributes(column, la);
...
m_chart->update();
...

This is implemented by configuring our line attributes and assign them by dataset to the
diagram, as shown above.

The same procedure is used for us to be able to run our animation. You can of course
learn more about this part of the code which is more related to Qt programming by
consulting examples/Lines/Advanced/mainwindow.cpp.

This example is available to compile and run from the examples/Lines/Advanced
directory in your KD Chart installation. We recommend you to run it. The widget
displayed by the above code is shown in the figure below.

Figure 4.12. A Full featured Line Chart

52

Note

The following sections about Point charts and Area are tightly related to
line charts. Point charts are line diagrams with Markers (lines themselves
are not painted). Area charts are also line charts with the area below the
lines, filled by the respective dataset's color.

Point Charts

Tip

Point charts often are used to visualize a big number of data in one or
several datasets. A well known point chart example is the historical first
Herzsprung-Russel diagram from 1914 where circles represented stars
with directly measured parallaxes and crosses were used for guessed
values of stars from star clusters similar to the following simple chart.

Figure 4.13. A Point Chart

53

Note

Unlike the other chart types in KD Chart the point chart is not a type of its
own but actually a special kind of Line Chart. The resulting display is
obtained by painting markers instead of lines as we will see in the
following code sample.

The process for creating a point chart is very simple as described below:

• Set up a line diagram and configure its pen to Qt::NoPen.

• Display its data values marker attributes.

Point Sample Code
The following code sample is going through the process described above to obtain a
very simple point chart. It is based on the examples/Widget/Simple which code has
been slightly modified to display a Point diagram.

...
// Hide the lines
widget.lineDiagram()->setPen(Qt::NoPen);
// Set up the Attributes
DataValueAttributes dva(widget.lineDiagram()->dataValueAttributes());
MarkerAttributes ma(dva.markerAttributes());

54

TextAttributes ta(dva.textAttributes());
ma.setVisible(true);
// display values or not
ta.setVisible(false);
dva.setTextAttributes(ta);
dva.setMarkerAttributes(ma);
dva.setVisible(true);

widget.lineDiagram()->setDataValueAttributes(dva);

This sample code is making use of a KDChartWidget and a KDChartLineDiagram
but of course the process is very similar if we were working with a KDChart::Chart.

We recommend you to run the complete example presented in the following Tips
section.

Points Attributes
As you have probably deduced from the section above, point charts are line charts
configured with no pen to avoid displaying the lines and using the generic classes
KDChartDataValueAttributes and its KDChartMarkerAttributes available to
all other diagram types supported by KD Chart 2.0.

For this reason we will for now point you to the sections related to those subjects and in
particular to Chapter 5 - Customizing your Chart - Section Markers or Chapter 9 -
Advanced Charting - Section Data Value Manipulation and finalize this section by
implementing a full featured point chart in the Tips section below.

Tips and Tricks
In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

A complete Point Example
In the following implementation we want to be able to:

• Be able to configure the points styles, color and size.

• Display data values or hide it.

• Shift between points and lines charts

We are using a KDChart::Chart class and also an home made TableModel for the

55

convenience. It is derived from QAbstractTableModel.

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This allows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model data files.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the examples/tools directory of your KD Chart installation.

Let us concentrate on our Line chart implementation for now and consult the following
files: other needed files like the ui, pro , qrc ,CSV and main.cpp files can be consulted
from the examples/Lines/PointChart directory of your installation.

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

30 #include "ui_mainwindow.h"
#include <TableModel.h>

namespace KDChart {
class Chart;

35 class LineDiagram;
}

class MainWindow : public QWidget, private Ui::MainWindow
{

40 Q_OBJECT

public:
MainWindow(QWidget* parent = 0);

45 private slots:

void on_lineTypeCB_currentIndexChanged(const QString & text);
void on_paintValuesCB_toggled(bool checked);

56

void on_paintMarkersCB_toggled(bool checked);
50 void on_paintLinesCB_toggled(bool checked);

void on_markersStyleCB_currentIndexChanged(const QString & text);
void on_markersWidthSB_valueChanged(int i);
void on_markersHeightSB_valueChanged(int i);

55 private:
KDChart::Chart* m_chart;
KDChart::LineDiagram* m_lines;
TableModel m_model;

};
60

#endif /* MAINWINDOW_H */

65

In the above code we bring up the KDChart namespace as usual and declare our slots.
The purpose is to let the user configure its line chart attributes manually from the GUI.
As you can see we are using a KDChart::Chart object (m_chart), a
KDChartLineDiagram object (m_lines), and our home made TableModel (m_model).

The implementation is similar to the line chart implementation presented earlier:

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#include "mainwindow.h"

#include <KDChartChart>
30 #include <KDChartLineDiagram>

#include <KDChartTextAttributes>
#include <KDChartDataValueAttributes>
#include <KDChartMarkerAttributes>

35
using namespace KDChart;

MainWindow::MainWindow(QWidget* parent) :
QWidget(parent)

40 {
setupUi(this);

57

QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m_chart = new Chart();

45 chartLayout->addWidget(m_chart);

m_model.loadFromCSV(":/data");

// Set up the diagram
50 m_lines = new LineDiagram();

m_lines->setModel(&m_model);
m_chart->coordinatePlane()->replaceDiagram(m_lines);
m_chart->setGlobalLeading(20, 20, 20, 20);

55 on_paintLinesCB_toggled(false);
on_paintMarkersCB_toggled(true);

}

void MainWindow::on_lineTypeCB_currentIndexChanged(const QString & text)
60 {

if (text == "Normal")
m_lines->setType(LineDiagram::Normal);

else if (text == "Stacked")
m_lines->setType(LineDiagram::Stacked);

65 else if (text == "Percent")
m_lines->setType(LineDiagram::Percent);

else
qWarning (" Does not match any type");

70 m_chart->update();
}

void MainWindow::on_paintValuesCB_toggled(bool checked)
{

75 const int colCount = m_lines->model()->columnCount(m_lines->rootIndex());
for (int iColumn = 0; iColumn<colCount; ++iColumn) {

DataValueAttributes a(m_lines->dataValueAttributes(iColumn));
QBrush brush(m_lines->brush(iColumn));
TextAttributes ta(a.textAttributes());

80 ta.setRotation(0);
ta.setFont(QFont("Comic"));
ta.setPen(QPen(brush.color()));

if (checked)
85 ta.setVisible(true);

else
ta.setVisible(false);

a.setVisible(true);
a.setTextAttributes(ta);

90 m_lines->setDataValueAttributes(iColumn, a);
}
m_chart->update();

}

95
void MainWindow::on_paintLinesCB_toggled(bool checked)
{

const int colCount = m_lines->model()->columnCount(m_lines->rootIndex());
for (int iColumn = 0; iColumn<colCount; ++iColumn) {

100 DataValueAttributes a(m_lines->dataValueAttributes(iColumn));
QBrush lineBrush(m_lines->brush(iColumn));
if (checked) {

QPen linePen(lineBrush.color());
m_lines->setPen(iColumn, linePen);

105 }
else

m_lines->setPen(iColumn, Qt::NoPen);
}

m_chart->update();
110 }

58

void MainWindow::on_paintMarkersCB_toggled(bool checked)
{

115 // set up a map with different marker styles
MarkerAttributes::MarkerStylesMap map;
map.insert(0, MarkerAttributes::MarkerSquare);
map.insert(1, MarkerAttributes::MarkerCircle);
map.insert(2, MarkerAttributes::MarkerRing);

120 map.insert(3, MarkerAttributes::MarkerCross);
map.insert(4, MarkerAttributes::MarkerDiamond);

const int colCount = m_lines->model()->columnCount(m_lines->rootIndex());
125 for (int iColumn = 0; iColumn<colCount; ++iColumn) {

DataValueAttributes dva(m_lines->dataValueAttributes(iColumn));
QBrush lineBrush(m_lines->brush(iColumn));
TextAttributes ta (dva.textAttributes());
if (paintValuesCB->isChecked())

130 ta.setVisible(true);
else

ta.setVisible(false);
MarkerAttributes ma(dva.markerAttributes());
ma.setMarkerStylesMap(map);

135 ma.setMarkerSize(QSize(markersWidthSB->value(),
markersHeightSB->value()));

switch (markersStyleCB->currentIndex()) {
case 0:

140 break;
case 1:

ma.setMarkerStyle(MarkerAttributes::MarkerCircle);
break;

case 2:
145 ma.setMarkerStyle(MarkerAttributes::MarkerSquare);

break;
case 3:

ma.setMarkerStyle(MarkerAttributes::MarkerDiamond);
break;

150 case 4:
ma.setMarkerStyle(MarkerAttributes::Marker1Pixel);
break;

case 5:
ma.setMarkerStyle(MarkerAttributes::Marker4Pixels);

155 break;
case 6:

ma.setMarkerStyle(MarkerAttributes::MarkerRing);
break;

case 7:
160 ma.setMarkerStyle(MarkerAttributes::MarkerCross);

break;
case 8:

ma.setMarkerStyle(MarkerAttributes::MarkerFastCross);
break;

165 }

QPen markerPen(lineBrush.color());
ma.setPen(markerPen);
ma.setVisible(true);

170 dva.setTextAttributes(ta);
dva.setMarkerAttributes(ma);

if (checked)
dva.setVisible(true);

175 else
dva.setVisible(false);

m_lines->setDataValueAttributes(iColumn, dva);
}

180 m_chart->update();
}

59

void MainWindow::on_markersStyleCB_currentIndexChanged(const QString & text)
185 {

Q_UNUSED(text);
if (paintMarkersCB->isChecked())

on_paintMarkersCB_toggled(true);
}

190

void MainWindow::on_markersWidthSB_valueChanged(int i)
{

Q_UNUSED(i);
195 markersHeightSB->setValue(markersWidthSB->value());

if (paintMarkersCB->isChecked())
on_paintMarkersCB_toggled(true);

}

200 void MainWindow::on_markersHeightSB_valueChanged(int /*i*/)
{

markersWidthSB->setValue(markersHeightSB->value());
if (paintMarkersCB->isChecked())

on_paintMarkersCB_toggled(true);
205 }

Here we will not comment in details the code as it is similar to what we have seen
before in our line chart example, but only pick up the interesting part of it.

In order to get a point chart we paint or hide the lines by setting our line diagram pen:

void MainWindow::on_paintLinesCB_toggled(bool checked)
{

const int colCount = m_lines->model()->columnCount(m_lines->rootIndex());
for (int iColumn = 0; iColumn<colCount; ++iColumn) {

DataValueAttributes a(m_lines->dataValueAttributes(iColumn));
QBrush lineBrush(m_lines->brush(iColumn));
if (checked) {

QPen linePen(lineBrush.color());
m_lines->setPen(iColumn, linePen);

}
else

m_lines->setPen(iColumn, Qt::NoPen);
}
m_chart->update();

}

We need to retrieve the pen color before resetting it to its original value, and do that by
looping through the datasets.

Note

It is important to know that have three levels of precedence when setting
the attributes:

• Global: Weak

60

• Per column: Medium

• Per cell: Strong

Which means that once you have set the attributes for a column or a cell,
you will not be able to change those settings by calling the "global"
method to reset it to another value, but instead call the per column or per
index setter. As demonstrated in the above code.

For us to be able to store different Markers style we make use of
MarkerAttributes::MarkerStylesMap map which is very convenient in this case.

...
MarkerAttributes::MarkerStylesMap map;
map.insert(0, MarkerAttributes::MarkerSquare);
map.insert(1, MarkerAttributes::MarkerCircle);
map.insert(2, MarkerAttributes::MarkerRing);
map.insert(3, MarkerAttributes::MarkerCross);
map.insert(4, MarkerAttributes::MarkerDiamond);
...
MarkerAttributes ma(dva.markerAttributes());
ma.setMarkerStylesMap(map);
....

The user may also change the size of the marker form the GUI and this is implemented
straight forward by using KDChartMarkerAttributes method setMarkerSize().

ma.setMarkerSize(QSize(markersWidthSB->value(),
markersHeightSB->value()));

This example is available to compile and run from the examples/Lines/PointChart
directory in your KD Chart installation. We recommend you to run it. The widget
displayed by the above code is shown in the figure below.

Figure 4.14. A Full featured Point Chart

61

Area Charts

Tip

Even more than a Line Chart (of which they are attributes) an area chart
can give a good visual impression of different datasets and their relation to
each other.

For example the area chart type might be the best choice for showing how
several sources contributed to increasing ozone values in a conurbation
during a summer's months.

Area charts are Line Charts and thus based upon several points which are connected by
lines—the difference to the line chart is that the area below a line is filled by the
respective dataset's color. This gives a clear appreciation of each dataset's relative
values.

In order to make it possible to see all points, since some are covered by another dataset's
area, we have introduced an attribute which allow the user to configure the level of
transparency (more about that in the Attributes paragraph of this section. KD Chart 2.0
supports of course Area display for all subtypes of line charts and thus allow also the
user to display the non-overlapping line types. The following types can be displayed
very simply in Area mode:

• Normal Line Area

• Stacked Line Area.

• Percent Line Area.

62

Figure 4.15. An Area Chart

Note

KD Chart uses the term "area" in two different ways which can be
distinguished easily:

• In this chapter it stands for a special chart type or even more accurately
as a line diagram attribute.

• In other context it can also point to the different (normally rectangular)
parts of a chart like for example the legend area or the headers area.

This varying usage of the word "area" should Not cause a lack of clarity:
In the context of this special section on area charts the word is clear, in
the rest of the manual it just means a part of a chart.

Displaying the area for a dataset or the whole diagram is straight forward:

• Create a LineAttribute object by calling
KDChartLineDiagram::lineAttributes

• Display it. You can also configure the level of transparency.

Area Sample Code

63

Let us make this more concrete by looking at the following lines of code and reproduce
the process described above:

// Create a LineAttribute object
LineAttributes la = m_lines->lineAttributes(index);
// set Display implicitely
la.setDisplayArea(true);
// Assign to the diagram
m_lines->setLineAttributes(index, la);

Of course Brush and Pen settings as well as all other configurable attributes accessible
by the diagram itself can be set, which give the user a lot of flexibility (display or hide
data values, markers, lines, configure colors etc ...).

Note

KDChartLineAttributes can be set for the whole diagram, for a dataset
or for a specific index (see sample code above), as for any other attributes.

Area Attributes
There are no specifical attributes related to the Area chart. As explained above Area
charts display mode is implemented as a Line Attribute. Of course the generic attributes
common to all chart types are availables, which give us full flexibility to configure our
Area chart.

Tips and Tricks
In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

A complete Area Example

Note

This example has already been presented in details Section - A
Complete Line Example. You dont need to go through it, if you
already have studied the section above.

In the following implementation we want to be able to:

64

• Display data values

• Shift line types (Normal, Stacked, Percent)

• Display areas for each dataset on its own and for the whole diagram

We are using a KDChart::Chart class and also an home made TableModel for the
convenience. It is derived from QAbstractTableModel.

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This allows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model data files.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the examples/tools directory of your KD Chart installation.

Let us concentrate on our Line chart implementation for now and consult the following
files: other needed files like the ui, pro , qrc ,CSV and main.cpp files can be consulted
from the examples/Lines/Advanced directory of your installation.

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

30 #include "ui_mainwindow.h"
#include <TableModel.h>

namespace KDChart {
class Chart;

35 class LineDiagram;
}

65

class MainWindow : public QWidget, private Ui::MainWindow
{

40 Q_OBJECT

public:
MainWindow(QWidget* parent = 0);

45 private slots:

void on_lineTypeCB_currentIndexChanged(const QString & text);
void on_paintValuesCB_toggled(bool checked);
void on_threeDModeCB_toggled(bool checked);

50 void on_depthSB_valueChanged(int i);
void on_animateAreasCB_toggled(bool checked);
void on_highlightAreaCB_toggled(bool checked);
void on_highlightAreaSB_valueChanged(int i);
void setHighlightArea(int row, int column, int opacity, bool checked, bool doUpdate);

55 void on_trackAreasCB_toggled(bool checked);
void on_trackAreasSB_valueChanged(int i);
void setTrackedArea(int column, bool checked, bool doUpdate);
void slot_timerFired();
void on_reverseHorizontalCB_toggled(bool checked);

60 void on_reverseVerticalCB_toggled(bool checked);

private:
KDChart::Chart* m_chart;
KDChart::LineDiagram* m_lines;

65 TableModel m_model;
int m_curRow;
int m_curColumn;
int m_curOpacity;

};
70

#endif /* MAINWINDOW_H */

75

In the above code we bring up the KDChart namespace as usual and declare our slots.
The purpose is to let the user configure its line chart attributes manually from the GUI.
As you can see we are using a KDChart::Chart object (m_chart), a
KDChartLineDiagram object (m_lines), and our home made TableModel (m_model).

The implementation is similar to the line chart implementation presented earlier:

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

66

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#include "mainwindow.h"

#include <KDChartChart>
30 #include <KDChartLineDiagram>

#include <KDChartTextAttributes>
#include <KDChartDataValueAttributes>
#include <KDChartThreeDLineAttributes>

35
#include <QTimer>

using namespace KDChart;

40 MainWindow::MainWindow(QWidget* parent) :
QWidget(parent)

{
setupUi(this);

45 m_curColumn = -1;
m_curOpacity = 0;

QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m_chart = new Chart();

50 chartLayout->addWidget(m_chart);

m_model.loadFromCSV(":/data");

// Set up the diagram
55 m_lines = new LineDiagram();

m_lines->setModel(&m_model);

CartesianAxis *xAxis = new CartesianAxis(m_lines);
CartesianAxis *yAxis = new CartesianAxis (m_lines);

60 xAxis->setPosition (KDChart::CartesianAxis::Bottom);
yAxis->setPosition (KDChart::CartesianAxis::Left);
m_lines->addAxis(xAxis);
m_lines->addAxis(yAxis);

65 m_chart->coordinatePlane()->replaceDiagram(m_lines);
m_chart->setGlobalLeading(20, 20, 20, 20);
// Instantiate the timer
QTimer *timer = new QTimer(this);
connect(timer, SIGNAL(timeout()), this, SLOT(slot_timerFired()));

70 timer->start(30);
}

void MainWindow::on_lineTypeCB_currentIndexChanged(const QString & text)
{

75 if (text == "Normal")
m_lines->setType(LineDiagram::Normal);

else if (text == "Stacked")
m_lines->setType(LineDiagram::Stacked);

else if (text == "Percent")
80 m_lines->setType(LineDiagram::Percent);

else
qWarning (" Does not match any type");

m_chart->update();
85 }

void MainWindow::on_paintValuesCB_toggled(bool checked)
{

const int colCount = m_lines->model()->columnCount(m_lines->rootIndex());

67

90 for (int iColumn = 0; iColumn<colCount; ++iColumn) {
DataValueAttributes a(m_lines->dataValueAttributes(iColumn));
QBrush brush(m_lines->brush(iColumn));
TextAttributes ta(a.textAttributes());
ta.setRotation(0);

95 ta.setFont(QFont("Comic", 10));
ta.setPen(QPen(brush.color()));

if (checked)
ta.setVisible(true);

100 else
ta.setVisible(false);

a.setVisible(true);
a.setTextAttributes(ta);
m_lines->setDataValueAttributes(iColumn, a);

105 }
m_chart->update();

}

void MainWindow::on_animateAreasCB_toggled(bool checked)
110 {

if(checked){
highlightAreaCB->setCheckState(Qt::Unchecked);
m_curRow = 0;
m_curColumn = 0;

115 }else{
m_curColumn = -1;

}
highlightAreaCB->setEnabled(! checked);
highlightAreaSB->setEnabled(! checked);

120 // un-highlight all previously highlighted columns
const int rowCount = m_lines->model()->rowCount();
const int colCount = m_lines->model()->columnCount();
for (int iColumn = 0; iColumn<colCount; ++iColumn){

setHighlightArea(-1, iColumn, 127, false, false);
125 for (int iRow = 0; iRow<rowCount; ++iRow)

// m_lines->resetLineAttributes(cellIndex);
setHighlightArea(iRow, iColumn, 127, false, false);

}
m_chart->update();

130 m_curOpacity = 0;
}

void MainWindow::slot_timerFired()
{

135 if(m_curColumn < 0) return;
m_curOpacity += 8;
if(m_curOpacity > 255){

setHighlightArea(m_curRow, m_curColumn, 127, false, false);
m_curOpacity = 5;

140 ++m_curRow;
if(m_curRow >= m_lines->model()->rowCount(m_lines->rootIndex())){

m_curRow = 0;
++m_curColumn;
if(m_curColumn >= m_lines->model()->columnCount(m_lines->rootIndex()))

145 m_curColumn = 0;
}

}
setHighlightArea(m_curRow, m_curColumn, m_curOpacity, true, true);

}
150

void MainWindow::setHighlightArea(int row, int column, int opacity, bool checked, bool doUpdate)
{

if(row < 0){
// highlight a complete dataset

155 LineAttributes la = m_lines->lineAttributes(column);
if (checked) {

la.setDisplayArea(true);
la.setTransparency(opacity);

} else {

68

160 la.setDisplayArea(false);
}
m_lines->setLineAttributes(column, la);

}else{
// highlight two segments only

165 if(row){
QModelIndex cellIndex(m_lines->model()->index(row-1, column, m_lines->rootIndex()));
if (checked) {

LineAttributes la(m_lines->lineAttributes(cellIndex));
la.setDisplayArea(true);

170 la.setTransparency(255-opacity);
// set specific line attribute settings for this cell
m_lines->setLineAttributes(cellIndex, la);

} else {
// remove any cell-specific line attribute settings from the indexed cell

175 m_lines->resetLineAttributes(cellIndex);
}

}
if(row < m_lines->model()->rowCount(m_lines->rootIndex())){

QModelIndex cellIndex(m_lines->model()->index(row, column, m_lines->rootIndex()));
180 if (checked) {

LineAttributes la(m_lines->lineAttributes(cellIndex));
la.setDisplayArea(true);
la.setTransparency(opacity);
// set specific line attribute settings for this cell

185 m_lines->setLineAttributes(cellIndex, la);
} else {

// remove any cell-specific line attribute settings from the indexed cell
m_lines->resetLineAttributes(cellIndex);

}
190 }

}
if(doUpdate)

m_chart->update();
}

195
void MainWindow::on_highlightAreaCB_toggled(bool checked)
{

setHighlightArea(-1, highlightAreaSB->value(), 127, checked, true);
}

200
void MainWindow::on_highlightAreaSB_valueChanged(int i)
{

Q_UNUSED(i);
if (highlightAreaCB->isChecked())

205 on_highlightAreaCB_toggled(true);
else

on_highlightAreaCB_toggled(false);
}

210 void MainWindow::on_threeDModeCB_toggled(bool checked)
{

ThreeDLineAttributes td(m_lines->threeDLineAttributes());
td.setDepth(depthSB->value());
if (checked)

215 td.setEnabled(true);
else

td.setEnabled(false);

m_lines->setThreeDLineAttributes(td);
220

m_chart->update();
}

void MainWindow::on_depthSB_valueChanged(int i)
225 {

Q_UNUSED(i);
if (threeDModeCB->isChecked())

on_threeDModeCB_toggled(true);
}

69

230
void MainWindow::on_trackAreasCB_toggled(bool checked)
{

setTrackedArea(trackAreasSB->value(), checked, true);
}

235
void MainWindow::on_trackAreasSB_valueChanged(int i)
{

Q_UNUSED(i);
on_trackAreasCB_toggled(trackAreasCB->isChecked());

240 }

void MainWindow::setTrackedArea(int column, bool checked, bool doUpdate)
{

for(int i = 0; i < m_model.rowCount(m_lines->rootIndex()); ++i) {
245 for(int j = 0; j < m_model.columnCount(m_lines->rootIndex()); ++j) {

QModelIndex cellIndex(m_model.index(i, j, m_lines->rootIndex()));
ValueTrackerAttributes va(m_lines->valueTrackerAttributes(cellIndex));
va.setEnabled(checked && j == column);
va.setAreaBrush(QColor(255, 255, 0, 50));

250 m_lines->setValueTrackerAttributes(cellIndex, va);
}

}
if(doUpdate)

m_chart->update();
255 }

void MainWindow::on_reverseHorizontalCB_toggled(bool checked)
{

static_cast<KDChart::CartesianCoordinatePlane*>(m_chart->coordinatePlane())->setHorizontalRangeReversed(checked);
260 }

void MainWindow::on_reverseVerticalCB_toggled(bool checked)
{

static_cast<KDChart::CartesianCoordinatePlane*>(m_chart->coordinatePlane())->setVerticalRangeReversed(checked);
265 }

First of all we are adding our chart to the layout as for any other Qt widget. Load the
data to be display into our model, and assign the model to our line diagram. We also
want to set up a QTimer to be able to run our animation. Finally we assign the diagram
to our chart.

...
QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m_chart = new Chart();
chartLayout->addWidget(m_chart);

m_model.loadFromCSV(":/data");

// Set up the diagram
m_lines = new LineDiagram();
m_lines->setModel(&m_model);
m_chart->coordinatePlane()->replaceDiagram(m_lines);

// Instantiate the timer
QTimer *timer = new QTimer(this);
connect(timer, SIGNAL(timeout()), this, SLOT(slot_timerFired()));
timer->start(40);
...

The user should be able to change the default sub-type via a combo box from the GUI.

70

This can be done by using KDChartBarDiagram::setType() as shown below and by
updating the view.

....
if (text == "Normal")

m_lines->setType(LineDiagram::Normal);
else if (text == "Stacked")

m_lines->setType(LineDiagram::Stacked);
else if (text == "Percent")

m_lines->setType(LineDiagram::Percent);
....
m_chart->update();

We want the user to be able to display or hide the data values from the GUI, and also
change the default font for our data values labels to make it nicer.

const int colCount = m_lines->model()->columnCount(m_lines->rootIndex());
for (int iColumn = 0; iColumn<colCount; ++iColumn) {

DataValueAttributes a(m_lines->dataValueAttributes(iColumn));
QBrush brush(m_lines->brush(iColumn));
TextAttributes ta(a.textAttributes());
ta.setRotation(0);
ta.setFont(QFont("Comic", 10));
ta.setPen(QPen(brush.color()));

if (checked)
ta.setVisible(true);

else
ta.setVisible(false);

a.setVisible(true);
a.setTextAttributes(ta);
m_lines->setDataValueAttributes(iColumn, a);

}
m_chart->update();

In the code above, we make sure our data values labels will be painted using the dataset
default color by retrieving the brush for each dataset and assigning the color of the brush
to the pen.

Note

It is important to know that have three levels of precedence when setting
the attributes: Which means that once you have set the attributes for a

• Global: Weak

• Per column: Medium

• Per cell: Strong

the attributes: Which means that once you have set the attributes for a
column or a cell, you will not be able to change those settings by calling
the "global" method to reset it to another value, but instead call the per

71

column or per index setter. As demonstrated in the above code.

The user should be able to display the area for one or several dataset.

....
LineAttributes la =
m_lines->lineAttributes(
m_lines->model()->index(0, column, m_lines->rootIndex()));
if (checked) {

la.setDisplayArea(true);
la.setTransparency(opacity);

} else {
la.setDisplayArea(false);

}
m_lines->setLineAttributes(column, la);
...
m_chart->update();
...

This is implemented by configuring our line attributes and assign them by dataset to the
diagram, as shown above.

The same procedure is used for us to be able to run our animation. You can of course
learn more about this part of the code which is more related to Qt programming by
consulting examples/Lines/Advanced/mainwindow.cpp.

This example is available to compile and run from the examples/Lines/Advanced
directory in your KD Chart installation. We recommend you to run it. The widget
displayed by the above code is shown in the figure below.

Figure 4.16. A Full featured Area Chart

72

Plotter Charts
Plotter charts are almost the same as normal line diagrams except of an important fact:
Line diagrams always expect the values running from 1..n having step width 1. Plotters
can instead of that handle free X/Y-pairs in any order and not being equidistant.

Therefore, KDChart::Plotter expects two columns in the model for each dataset
being plotted. See the example below to find out how to use this. Apart fom that
difference, please refer to the line diagram section in this manual. There's explained how
to set the different attributes for that diagram type.

Plotter Sample Code
The following code sample is plotting a sine wave and an exponential curve from -2*pi
- 2*pi consisting of 400 points on the x-axis:

QStandardItemModel model(points, 4);

double x = -2 * 3.141592653589793;
for(int n = 0; n < 400; ++n) {

QModelIndex index = model.index(n, 0);
model.setData(index, QVariant(x));
// the x value: x
index = model.index(n, 1);
// the y value sin(x) * 100
model.setData(index, QVariant(sin(x) * 100));

index = model.index(n, 2);
model.setData(index, QVariant(x));
index = model.index(n, 3);
model.setData(index, QVariant(x * x * x));

x += 4 * 3.141592653589793 / 399.0;
}

KDChart::Chart chart;
KDChart::Plotter plotter;
plotter.setmodel(& model);
chart.coordinatePlane()->replaceDiagram(&plotter);

chart.show();

Polar coordinate plane
KD Chart makes use of the Polar coordinate system, and in particular its
KDChart::PolarCoordinatePlane class for displaying chart types like Pie, Polar
and Ring.

In this section we will describe and present each of the chart types which uses the Polar
coordinate plane.

73

In general to implement a particular type of chart, just create an object of this type by
calling KDChart[type]Diagram, or if your are using KDChartWidget you will need
to call its setType() and specify the appropriate chart type. (e.g Widget::Pie,
Widget::Polar etc...)

Pie Charts

Tip

Pie charts can be used to visualize the relative values of a few data cells
(typically 2..20 values). Larger amounts of items can be hard to distinguish
in a pie chart, so a Percent Bar Chart might fit your needs better then. Pie
charts are most suitable if one of the data elements covers at least one
forth, preferably even more of the total area.

A good example is the distribution of market shares among products or
vendors.

While pie charts are nice for displaying one dataset there is a
complementary chart type you might choose to visualize several datasets:
the Ring Chart, a circular multi dataset chart type described in the Ring
Charts section furhter on.

Pie charts typically consist of two or more pieces any number of which can be shown
'exploded' (shifted away from the center) at different amounts, starting position of the
first pie can be specified and your pie chart can be drawn in three-D look. Activating the
pie chart mode is done by calling the KDChartWidget function setType(
KDChartWidget::Pie) or by creating an object of this type using the
KDChartPieDiagram class.

Note

Three-dimensional look of the pies is no special feature you can enable by
setting its ThreeD attributes, we will describe that more in details Chapter
5 - Customizing your Chart - ThreeD section further on.

Simple Pie Charts

Tip

A simple pie chart shows the data without emphasizing a special item.

74

Figure 4.17. A Simple Pie Chart

KD Chart by default draws two-dimensional pie charts when in pie chart mode so no
method needs to be called to get one. We are describing more in details about how to
obtain three dimensional look for a pie chart in the following Pie Attributes section.

Exploding Pie Charts

Tip

Explode individual segments to emphasize individual data.

Figure 4.18. An Exploding Pie Chart

75

We will go through all the configuration possibilities in the Pie Attributes section
below, but let us study some code sample first.

Code Sample
For now let us make the above description more concrete by looking at the following
code sample based on the Simple Widget example we have been demonstrating above
(Chapter 3 - Two Ways - Widget Example). In this example we demonstrate
how to configure your Pie diagram and change its attributes when working with a
KDChartWidget.

First include the appropriate headers and bring in the "KDChart namespace":

#include <QApplication>
#include <KDChartWidget>
#include <KDChartPieDiagram>
#include <QPen>

using namespace KDChart;

We need to include KDChartPieDiagram in order to be able to configure some of its

76

attributes as we will see further on.

int main(int argc, char** argv) {
QApplication app(argc, argv);
Widget widget;
// our Widget can be configured
// as any Qt Widget
widget.resize(600, 600);
// store the data and assign it
QVector< double > vec0, vec1;
vec0 << 5 << 1 << 3 << 4 << 1;
vec1 << 3 << 6 << 2 << 4 << 8;
vec2 << 0 << 7 << 1 << 2 << 1;
widget.setDataset(0, vec0, "vec0");
widget.setDataset(1, vec1, "vec1");
widget.setDataset(2, vec2, "vec2");
widget.setType(Widget::Pie);

We just need to change the default chart type (Line Charts) by calling the
KDChartWidget::setType method.

Now let us configure a Pen to draw a line arount the Pie and its section

QPen piePen(widget.pieDiagram()->pen());
piePen.setWidth(3);
piePen.setColor(Qt::yellow);
// call your diagram and set the new pen
widget.pieDiagram()->setPen(2, piePen);

Here we are configuring the pen "attribute". As you can see it is straight forward.
KDChartWidget::pieDiagram() allow us to get a pointer to our widget diagram. As
you can see it is very simple to assign a new pen to our diagram by calling the diagram
KDChartAbstractDiagram::setPen() method.

Finally we conclude our small example:

widget.show();

return app.exec();
}

See the screen-shot below to view The resulting chart displayed by the above code.

Figure 4.19. A Simple Pie Widget

77

This example can be compiled and run from the following location of your KD Chart
installation examples/Pie/Simple

Note

Configuring the attributes for a KDChartPieDiagram making use of a
KDChart::Chart is done the same way as for a KDChartWidget. You
just need to assign the configured attributes to your pie diagram and assign
the diagram to the chart by calling
KDChart::Chart::replaceDiagram().

Pies Attributes
By "Pie attributes" we are talking about all parameters that can be configured and set by
the user and which are specific to the Pie Chart type. KD Chart 2.0 API separates the
attributes specifics to a chart type itself and the generic attributes which are common to
all chart types as for example the setters and getters for a brush or a pen (See
KDChartAbstractDiagram or KDChartPieAbstractDiagram etc...

All those attributes have a reasonnable default value that can simply be modified by the
user by calling one of the diagram set function implemented on this purpose
KDChartPieDiagram::setPieAttributes().

The procedure is straight forward:

• Create a KDChart::PieAttributes object by calling

78

KDChartPieDiagram::pieAttributes.

• Configure this object using the setters available.

• Assign it to your Diagram with the help of one of the setters available in
KDChart::PieDiagram. All the attributes can be configured to be applied for the
whole diagram, for a column, or at a specified index (QModelIndex).

KD Chart 2.0 supports the following attributes for the Pie chart type. Each of those
attributes can be set and retrieved the way we describe it in our example below:

• Explode: Enable/Disable exploding pie piece(s)

• Explode factor: The explode factor is a qreal between 0 and 1, it is interpreted as a
percentage of the total available radius.

• StartPosition: Set the starting angle for the first dataset. Can only be specified for the
whole diagram.

• Granularity: Set the granularity: the smaller the granularity the more your
diagramsegments will show facettes instead of rounded segments. Can only be
specified for the whole diagram.

• PieAttributes: set or retrieve the pie diagram Attributes. (see:
KDChartAbstractPieDiagram)

• ThreeDPieAttributes: set or retrieve the diagram ThreeDAttributes. (see:
KDChartAbstractPieDiagram)

Tip

The default explode factor is 10 percent; use setExplodeFactor to
specify a different factor. This is a convenience function: Calling
setExplode(true) does the same as calling setExplodeFactor(
0.1), and calling setExplode(false) does the same as calling
setExplodeFactor(0.0).

To get a pie chart like the one presented above (having one or several of the pieces
separated from the others in exploded mode) you would have to set its attributes by
calling KDChartPieAttributes::setExplode or
KDChartPieAttributes::setExplodeFactor if you want to change the explode
factore default value and then use the available methods to assing those attributes to
your diagram as shown in the following code sample

// 1 - Create a PieAttribute object
PieAttributes pa (m_pie->PieAttributes());
// 2 - Enable exploding, point to a dataset and give the
// explode factor passing the dataset number and the factor

79

pa.setExplodeFactor(0.5);
// 3 - Assign to your diagram
m_pie->setPieAttributes(column, pa);

Note

Three-dimensional look of the pies can be enable and configured by
setting its ThreeD attributes the same way as we are setting the
PieAttributes in the code sample above, we will describe that more in
details Chapter 5 - Customizing your Chart - ThreeD section further on.

Pie Attributes Sample
Let us make this more concrete by looking at the following sample code that describes
the above process. We recommand you to compile and run the following example which
is located in the examples/Lines/Parameters directory of your KD Chart
installation.

First of all we are including the header files and bring KD Chart namespace.

#include <QtGui>
#include <KDChartChart>
#include <KDChartPieDiagram>
#include <KDChartPieAttributes>

using namespace KDChart;

We have included KDChartPieAttributes to be able to configure exploding for one
of the pie slice. Those attributes are specifical to the Pie types.

In this example we are using a KDChart::Chart class as well as a
QStandardItemModel in order to store the data which will be assigned to our
diagram.

m_model.insertRows(0, 1, QModelIndex());
m_model.insertColumns(0, 6, QModelIndex());
for (int row = 0; row < 1; ++row) {

for (int column = 0; column < 6; ++column) {
QModelIndex index =
m_model.index(row, column, QModelIndex());
m_model.setData(index, QVariant(row+1 * column+1));

}
}
// We need a Polar plane for the Pie type
PolarCoordinatePlane* polarPlane =
new PolarCoordinatePlane(&m_chart);
// replace the default Cartesian plane with
// our Polar plane
m_chart.replaceCoordinatePlane(polarPlane);

// assign the model to our pie diagram

80

PieDiagram* diagram = new PieDiagram;
diagram->setModel(&m_model);

After having stored our data into the model, we create a need to replace the default
Cartesian plane against a Polar plane before creating our Pie diagram. In this case, we
want to display a KDChartPieDiagram. As always we need to assign the model to our
diagram. This procedure is of course similar for all types of diagrams.

We are now ready to configure our attributes. We want to explode a section and
configure a Pen to surround it. Let us begin with the specifical PieAttributes.

// Configure some Pie specifical attributes

// explode a section
PieAttributes pa(diagram->pieAttributes());
pa.setExplodeFactor(0.1);

// Assign the attributes
// to the diagram
diagram->setPieAttributes(1, pa);

As for all attributes we call them by using the relevant method available from our
diagram interface, here diagram->PieAttributes(). The second step is to set it up
with our own values and finally we assign it to our diagram. In the above code we
explode the second slice (dataset) in our Pie.

Note

After having configured our attributes we need to assign the attributes to
the diagram. This can be done for the whole diagram, at a specific index or
for a column. Look at the attributes interface and look at the methods
available there to find out those setters and getters.

We want to configure the Pen in order to draw a surrounding line around the exploded
section (dataset) to focus the attention of the reader on this particular section.

// Configure a generic attribute
// available to all chart types
QPen sectionPen;
sectionPen.setWidth(5);
sectionPen.setStyle(Qt::DashLine);
sectionPen.setColor(Qt::magenta);

diagram->setPen(1, sectionPen);

Of course we could also have changed the pen for all datasets as well.

Note

81

The Pen and the Brush setters and getters are implemented at a lower level
in our KDChartAbstractDiagram class for a cleaner code structure.
Those methods are of course used by all types of diagram and their
configuration is very simple and straight forward as you can see in the
above sample code. Create or get a Pen , configure it, call one of the
setters methods available (See KDChartAbstractDiagram.h about
those methods).

Our attributes having been configured and assigned we just need to assign our Pie
diagram to our chart and conclude the implementation.

// Assign our diagram to the Chart
m_chart.coordinatePlane()->replaceDiagram(diagram);

QVBoxLayout* l = new QVBoxLayout(this);
l->addWidget(&m_chart);
setLayout(l);

}

The above procedure can be applied to any of the supported attributes for all chart types.
The resulting display of the code we have gone through can be seen in the following
screen-shot. We also recommend you to compile and run the example related to this
section and located in the examples/Pie/Parameters directory of your KD Chart
installation.

Figure 4.20. Pie With Configured Attributes

82

Note

ThreeDAttibutes for the different chart types are implemented has an own
class, the same way as for the other attributes. We will talk more in details
about KD Chart 2.0 ThreeD features in the ThreeD section, Chapter 5 -
Customizing your Chart.

Tips and Tricks
In this section we want to go through some examples about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

A complete Pie Example
In the following implementation we want to be able to:

• Configure the Start position .

• Display a Pie chart and shift between normal and threeD look.

• Explode one or several slices and set a surrounding line around exploded sections

• Run an animation (exploding).

In the example below we are using a KDChart::Chart class and also an home made
TableModel for the convenience. It is derived from QAbstractTableModel.

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This allows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model data files.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the examples/tools directory of your KD Chart installation.

Let us concentrate on our Pie chart implementation for now and consult the following
files: other needed files like the ui, pro , qrc ,CSV and main.cpp files can be consulted
from the examples/Pie/Advanced directory of your installation.

1
/**
** Copyright (C) 2006 Klar#vdalens Datakonsult AB. All rights reserved.
**

83

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

30 #include "ui_mainwindow.h"
#include <TableModel.h>

class QTimer;
namespace KDChart {

35 class Chart;
class PieDiagram;

}

class MainWindow : public QWidget, private Ui::MainWindow
40 {

Q_OBJECT

public:
MainWindow(QWidget* parent = 0);

45
private slots:

// start position
void on_startPositionSB_valueChanged(double pos);
void on_startPositionSL_valueChanged(int pos);

50
// explode
void on_explodeSubmitPB_clicked();
void on_animateExplosionCB_toggled(bool toggle);
void setExplodeFactor(int column, double value);

55
// animation
void slotNextFrame();

// 3D
60 void on_threeDGB_toggled(bool toggle);

void on_threeDFactorSB_valueChanged(int factor);

private:
KDChart::Chart* m_chart;

65 TableModel m_model;
KDChart::PieDiagram* m_pie;
QTimer* m_timer;

int m_currentFactor;
70 int m_currentDirection;

int m_currentSlice;
};

84

75 #endif /* MAINWINDOW_H */

In the above code we bring up the KDChart namespace as usual and declare our slots.
The purpose is to let the user configure its line chart attributes manually from the GUI.
As you can see we are using a KDChart::Chart object (m_chart), a KDChartPieDiagram
object (m_pie), and our home made TableModel (m_model).

Note

Before diplaying our Pie diagram we need to implicitely replace the
default cartesian plane by a Polar plane.

1
/**
** Copyright (C) 2006 Klar#vdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#include "mainwindow.h"

#include <KDChartChart>
30 #include <KDChartPieDiagram>

#include <KDChartPieAttributes>
#include <KDChartThreeDPieAttributes>

#include <QDebug>
35 #include <QTimer>

using namespace KDChart;

MainWindow::MainWindow(QWidget* parent) :
40 QWidget(parent), m_currentFactor(0), m_currentDirection(1), m_currentSlice(0)

{
setupUi(this);

QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
45 m_chart = new Chart();

m_chart->setGlobalLeadingLeft(5);
m_chart->setGlobalLeadingRight(5);
chartLayout->addWidget(m_chart);

85

hSBar->setVisible(false);
50 vSBar->setVisible(false);

m_model.loadFromCSV(":/data");

// Set up the diagram
55 PolarCoordinatePlane* polarPlane = new PolarCoordinatePlane(m_chart);

m_chart->replaceCoordinatePlane(polarPlane);
m_pie = new PieDiagram();
m_pie->setModel(&m_model);
m_chart->coordinatePlane()->replaceDiagram(m_pie);

60
m_timer = new QTimer(this);
connect(m_timer, SIGNAL(timeout()), this, SLOT(slotNextFrame()));

}

65 void MainWindow::on_startPositionSB_valueChanged(double pos)
{

const int intValue = static_cast<int>(pos);
startPositionSL->blockSignals(true);
startPositionSL->setValue(intValue);

70 startPositionSL->blockSignals(false);
static_cast<PolarCoordinatePlane*>(m_chart->coordinatePlane())->setStartPosition(pos);
m_chart->update();

}

75 void MainWindow::on_startPositionSL_valueChanged(int pos)
{

double doubleValue = static_cast<double>(pos);
startPositionSB->blockSignals(true);
startPositionSB->setValue(doubleValue);

80 startPositionSB->blockSignals(false);
static_cast<PolarCoordinatePlane*>(m_chart->coordinatePlane())->setStartPosition(pos);
m_chart->update();

}

85 void MainWindow::on_explodeSubmitPB_clicked()
{

setExplodeFactor(explodeDatasetSB->value(), explodeFactorSB->value());
m_chart->update();

}
90

void MainWindow::setExplodeFactor(int column, double value)
{

// note: We use the per-column getter method here, it will fall back
// automatically to return the global (or even the default) settings.

95 PieAttributes attrs(m_pie->pieAttributes(column));
attrs.setExplodeFactor(value);
m_pie->setPieAttributes(column, attrs);
m_chart->update();

}
100

void MainWindow::on_animateExplosionCB_toggled(bool toggle)
{

if(toggle)
m_timer->start(100);

105 else
m_timer->stop();

}

void MainWindow::slotNextFrame()
110 {

m_currentFactor += (1 * m_currentDirection);
if(m_currentFactor == 0 || m_currentFactor == 5)

m_currentDirection = -m_currentDirection;

115 if(m_currentFactor == 0) {
setExplodeFactor(m_currentSlice, 0.0);
m_currentSlice++;
if(m_currentSlice == 4)

86

m_currentSlice = 0;
120 }

setExplodeFactor(
m_currentSlice,
static_cast<double>(m_currentFactor) / 10.0);

125 m_chart->update();
}

void MainWindow::on_threeDGB_toggled(bool toggle)
{

130 // note: We use the global getter method here, it will fall back
// automatically to return the default settings.
ThreeDPieAttributes attrs(m_pie->threeDPieAttributes());
attrs.setEnabled(toggle);
attrs.setDepth(threeDFactorSB->value());

135 m_pie->setThreeDPieAttributes(attrs);
m_chart->update();

}

void MainWindow::on_threeDFactorSB_valueChanged(int factor)
140 {

// note: We use the global getter method here, it will fall back
// automatically to return the default settings.
ThreeDPieAttributes attrs(m_pie->threeDPieAttributes());
attrs.setEnabled(threeDGB->isChecked());

145 attrs.setDepth(factor);
m_pie->setThreeDPieAttributes(attrs);
m_chart->update();

}

150

First of all we are adding our chart to the layout as for any other Qt widget. Load the
data to be display into our model, and assign the model to our pie diagram. We also
want to set up a QTimer to be able to run our animation. Finally we assign the diagram
to our chart.

...
QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m_chart = new Chart();
chartLayout->addWidget(m_chart);

m_model.loadFromCSV(":/data");

// Set up the plane
PolarCoordinatePlane* polarPlane = new PolarCoordinatePlane(m_chart);
m_chart->replaceCoordinatePlane(polarPlane);

// Set up the diagram
m_pie = new LineDiagram();
m_pie->setModel(&m_model);
m_chart->coordinatePlane()->replaceDiagram(m_pie);

// Instantiate the timer
QTimer *timer = new QTimer(this);
connect(timer, SIGNAL(timeout()), this, SLOT(slot_NextFrame()));
...

The user should be able to change the start position from the GUI. This can be

87

implemented by using KDChartPieAttributes as shown below and by updating the
view.

....
PieAttributes pa(m_pie->pieAttributes());
pa.setStartPosition(pos);
m_pie->setPieAttributes(pa);
m_chart->update();

....

We want the user to be able to shift between 3D mode display or the normal standard
display from the GUI.

// note: We use the global getter method here, it will fall back
// automatically to return the default settings.
ThreeDPieAttributes tda(m_pie->threeDPieAttributes());
tda.setEnabled(toggle);
tda.setDepth(threeDFactorSB->value());
m_pie->setThreeDPieAttributes(tda);
m_chart->update();

Note

It is important to know that have three levels of precedence when setting
the attributes: Which means that once you have set the attributes for a

• Global: Weak

• Per column: Medium

• Per cell: Strong

the attributes: Which means that once you have set the attributes for a
column or a cell, you will not be able to change those settings by calling
the "global" method to reset it to another value, but instead call the per
column or per index setter. As demonstrated in the above code.

We want the user to be able to explode one or several slice(s) (dataset) and to configure
the exploding factor.

....
// note: We use the per-column getter method here, it will fall back
// automatically to return the global (or even the default) settings.
PieAttributes pa(m_pie->pieAttributes(column));
pa.setExplodeFactor(value);
m_pie->setPieAttributes(column, pa);
...
m_chart->update();
...

88

This is implemented by configuring our pie attributes and assign them by dataset to the
diagram, as shown above.

The same procedure is used for us to be able to run our animation. You can of course
learn more about this part of the code which is more related to Qt programming by
consulting examples/Pie/Advanced/mainwindow.cpp.

This example is available to compile and run from the examples/Pie/Advanced
directory in your KD Chart installation. We recommend you to run it. The widget
displayed by the above code is shown in the figure below.

Figure 4.21. A Full featured Pie Chart

Ternary coordinate plane
KD Chart has support for ternary charts and has therefore an appropriate coordinate
plane. This is the class KDChart::TernaryCoordinatePlane.

The idea of ternary charts is to plot triple values on a triangle. Triple values are
represented by three floating point values having the fixed sum 1.0. Therefore each
plotted dataset needs three columns in the model.

Tip

KD Chart is using only the first two of them and calculates the third one
out of those. If the sum of the first two columns is already greater than 1.0,
the data triple is considered invalid and disregarded.

89

This section will describe the chart types which can be added to a ternary coordinate
plane.

To use such a diagram, you need to create an instance of
KDChart::TernaryCoordinatePlane. After that, you can make KD Chart using it
by using KDChart::Chart::replaceCoordinatePlane and add a diagram to it.

Ternary Line Charts
A ternary line charts connects all points of each dataset with a line.

Have a look at the following code example explaining how to work with it:

KDChart::Chart chart;
// replace the default (cartesian) coordinate plane with a ternary one
KDChart::TernaryCoordinatePlane* ternaryPlane = new KDChart::TernaryCoordinatePlane;
chart.replaceCoordinatePlane(ternaryPlane);
// make a ternary line diagram
KDChart::TernaryLineDiagram* diagram = new KDChart::TernaryLineDiagram;
// and replace the default diagram with it
ternaryPlane->replaceDiagram(diagram);

chart.show();

What's next
For our diagram to be useful we need to be able to display its axis. That will be the
subject of our next section.

90

Chapter 5. Axes
Axes are implemented at different levels in the KD Chart 2.0 API. KD Chart make use
of Cartesian axis - see KDChartCartesianAxis and Polar Axis which are derived
from the base class for axes KDChartAbstractAxis. .

The user may specify its own set of strings to be used as Axis labels with the
KDChartAbstractAxis::setLabels(const QStringList) method.

Note

Labels specified via setLabels take precedence: If a non-empty list is
passed, KD Chart will use these strings as axis labels, instead of
calculating them. By passing an empty QStringList you can reset the
default behaviour.

For the convenience we can also specify short labels in our own set of string to be used
as axis labels,in case the normal labels are too long by using
KDChartAbstractAxis::setShortLabels(const QStringList)

Axis values and labels text attributes can also be configured. Thus the labels of all of
your axes in all of your diagrams within that Chart will be drawn in same font size, by
default.

The setters and getters for axis labels and their text attributes are implemented in the
axis base class KDChartAbstractAxis, we recommend you to study its interface - See
KDChartAbstractAxis.h.

Tip

If you set a smaller number of strings than the number of labels drawn at
this axis, KD Chart will iterate over the list, repeating the strings, until all
labels are drawn.

As an example you could specify the seven days of the week as abscissa
labels, which would be repeatedly used then.

Cartesian Axis
The class KDChartCartesianAxis is used together with the diagrams displayed in a
cartesian coordinate plane and contains the setters and getters related to the axis
specifics to those chart types.

It allows the user to set and retrieve the position (top, bottom, left or right), or the type
(abscissa, ordinate) of the axis, assign or retrieve a title and its text attributes. That is

91

where the axis are painted.

The setters and getters for those specifics cartesian features are implemented in
KDChartCartesianAxis, we recommend you to study its interface - See
KDChartCaretesianAxis.h.

Ternary Axis
The class KDChart::TernaryAxis is made for use with diagrams displayed in a
ternary coordinate plane.

Since ternary diagrams are not rectangular but triangular, ternary axes can be added at
three different positions relative to the diagram: South, East and West.

How to configure
In order to add axis to a cartesian diagram we need to use
KDChartAbstractCartesianDiagram::AddAxis() method. The diagram takes
ownership of the axis and will delete it by itself.

To gain back ownership (e.g. for assigning the axis to another diagram) use the
KDChartAbstractDiagram::takeAxis() method, before calling addAxis on the
other diagram.

Note

KDChartAbstractDiagram::takeAxis()Removes the axis from the
diagram, without deleting it. The diagram no longer owns the axis, so it is
the caller's responsibility to delete the axis.

Cartesian Axes sample
Let us make the above description more concrete by looking at the following lines of
code based on the Simple Widget example we have been demonstrating above
(Chapter 3 - Two Ways - Widget Example). In this example we demonstrate
how to add an X axis and a Y axis to your diagram and set the Axis titles when working
with a KDChartWidget..

First include the appropriate headers and bring in the "KDChart namespace":

#include <QApplication>
#include <KDChartWidget>
#include <KDChartLineDiagram>
#include <KDChartCartesianAxis>

92

using namespace KDChart;

We need to include KDChartLineDiagram in order to be able to add the Axis as we
will see further on.

int main(int argc, char** argv) {
QApplication app(argc, argv);
Widget widget;
// our Widget can be configured
// as any Qt Widget
widget.resize(600, 600);
// store the data and assign it
QVector< double > vec0, vec1;
vec0 << 5 << 1 << 3 << 4 << 1;
vec1 << 3 << 6 << 2 << 4 << 8;
vec2 << 0 << 7 << 1 << 2 << 1;
widget.setDataset(0, vec0, "vec0");
widget.setDataset(1, vec1, "vec1");
widget.setDataset(2, vec2, "vec2");

Note

We don't need to change the default chart type (Line Charts) by calling the
KDChartWidget::setType method.

Now let us create our axis, position them and set their titles:

CartesianAxis *xAxis = new CartesianAxis(widget.lineDiagram());
CartesianAxis *yAxis = new CartesianAxis (widget.lineDiagram());
xAxis->setPosition (CartesianAxis::Bottom);
yAxis->setPosition (CartesianAxis::Left);
xAxis->setTitleText ("Abscissa bottom position");
yAxis->setTitleText ("Ordinate left position");

And add them to our diagram which will take the ownership:

widget.lineDiagram()->addAxis(xAxis);
widget.lineDiagram()->addAxis(yAxis);

Finally we conclude our small example:

widget.show();

return app.exec();
}

See the screen-shot below to view The resulting chart displayed by the above code.

93

Figure 5.1. A Simple Widget With Axis

This example can be compiled and run from the following location of your KD Chart
installation examples/Axis/Widget, we recommend you to do so.

In the Tips section below we will present you a more elaborate example which uses
KDChart::Chart and where we are configuring our axis title text attributes. We also
use our own labels and their shortened version.

Tips
In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

Axis Example
In the following implementation we want to be able to:

• Add axes at different positions.

• Set the axis title and configure their text attributes.

94

• Use our own labels and their shortened versions.

• Configure our labels text attributes.

In the example below we are using a KDChart::Chart class and also a home made
TableModel for the convenience. It is derived from QAbstractTableModel.

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This allows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model data files.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the examples/tools directory of your KD Chart installation.

Let us concentrate on our diagram _with_ axis implementation for now and consult the
following files: other needed files like the ui, pro , qrc ,CSV and main.cpp files can be
consulted from the examples/Axis/Chart directory of your installation.

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

30 #include "ui_mainwindow.h"
#include <TableModel.h>

namespace KDChart {
class Chart;

35 class LineDiagram;
}

class MainWindow : public QWidget, private Ui::MainWindow
{

95

40 Q_OBJECT

public:
MainWindow(QWidget* parent = 0);

45
private:

KDChart::Chart* m_chart;
TableModel m_model;
KDChart::LineDiagram* m_lines;

50 };

#endif /* MAINWINDOW_H */

55

In the above code we bring up the KDChart namespace as usual. As you can see we are
using a KDChart::Chart object (m_chart), a KDChartLineDiagram object (m_lines), and
our home made TableModel (m_model).

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#include "mainwindow.h"

#include <KDChartChart>
30 #include <KDChartLineDiagram>

#include <KDChartTextAttributes>

using namespace KDChart;

35 MainWindow::MainWindow(QWidget* parent) :
QWidget(parent)

{
setupUi(this);

40 QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m_chart = new Chart();
m_chart->setGlobalLeading(10, 10, 10, 10);
chartLayout->addWidget(m_chart);
hSBar->setVisible(false);

45 vSBar->setVisible(false);

96

m_model.loadFromCSV(":/data");

// Set up the diagram
50 m_lines = new LineDiagram();

m_lines->setModel(&m_model);

// create and position axis
CartesianAxis *topAxis = new CartesianAxis(m_lines);

55 CartesianAxis *leftAxis = new CartesianAxis (m_lines);
CartesianAxis *rightAxis = new CartesianAxis (m_lines);
CartesianAxis *bottomAxis = new CartesianAxis (m_lines);
topAxis->setPosition (CartesianAxis::Top);
leftAxis->setPosition (CartesianAxis::Left);

60 rightAxis->setPosition (CartesianAxis::Right);
bottomAxis->setPosition (CartesianAxis::Bottom);

// set axis titles
topAxis->setTitleText ("Abscissa color configured top position");

65 leftAxis->setTitleText ("left Ordinate: fonts configured");
rightAxis->setTitleText ("right Ordinate: default settings");
bottomAxis->setTitleText ("Abscissa Bottom");

// configure titles text attributes
70 TextAttributes taTop (topAxis->titleTextAttributes ());

taTop.setPen(QPen(Qt::red));
topAxis->setTitleTextAttributes (taTop);

TextAttributes taLeft (leftAxis->titleTextAttributes ());
75 taLeft.setRotation(180);

Measure me(taLeft.fontSize());
me.setValue(me.value() * 0.8);
taLeft.setFontSize(me);

// Set the following to 1, to hide the left axis title
80 // - no matter if a title text is set or not

#if 0
taLeft.setVisible(false);

#endif
leftAxis->setTitleTextAttributes (taLeft);

85
TextAttributes taBottom (bottomAxis->titleTextAttributes ());
taBottom.setPen(QPen(Qt::blue));
bottomAxis->setTitleTextAttributes (taBottom);

90 // configure labels text attributes
TextAttributes taLabels(topAxis->textAttributes());
taLabels.setPen(QPen(Qt::darkGreen));
taLabels.setRotation(90);
topAxis->setTextAttributes(taLabels);

95 leftAxis->setTextAttributes(taLabels);
bottomAxis->setTextAttributes(taLabels);

// Set the following to 0, to see the default Abscissa labels
100 // (== X headers, as read from the data file)

#if 1
// configure labels and their shortened versions
QStringList daysOfWeek;
daysOfWeek << "M O N D A Y" << "Tuesday" << "Wednesday"

105 << "Thursday" << "Friday" ;
topAxis->setLabels(daysOfWeek);

QStringList shortDays;
shortDays << "MON" << "Tue" << "Wed"

110 << "Thu" << "Fri";
topAxis->setShortLabels(shortDays);

QStringList bottomLabels;
bottomLabels << "Team A" << "Team B" << "Team C";

115 bottomAxis->setLabels(bottomLabels);

97

QStringList shortBottomLabels;
shortBottomLabels << "A" << "B";
bottomAxis->setShortLabels(shortBottomLabels);

120 #endif

// add axis
m_lines->addAxis(topAxis);
m_lines->addAxis(leftAxis);

125 m_lines->addAxis(rightAxis);
m_lines->addAxis(bottomAxis);

// assign diagram to chart view
m_chart->coordinatePlane()->replaceDiagram(m_lines);

130 }

First of all we are adding our chart to the layout as for any other Qt widget. Load the
data to be displayed into our model, and assign the model to our diagram.

...
QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m_chart = new Chart();
chartLayout->addWidget(m_chart);
hSBar->setVisible(false);
vSBar->setVisible(false);

m_model.loadFromCSV(":/data");

// Set up the diagram
m_lines = new LineDiagram();
m_lines->setModel(&m_model);
...

We want to display three axis, respectively positioned at the top, left and bottom side of
our diagram. This is straight forward:

....
CartesianAxis *topAxis = new CartesianAxis(m_lines);
CartesianAxis *leftAxis = new CartesianAxis (m_lines);
CartesianAxis *bottomAxis = new CartesianAxis (m_lines);
topAxis->setPosition (CartesianAxis::Top);
leftAxis->setPosition (CartesianAxis::Left);
bottomAxis->setPosition (CartesianAxis::Bottom);
....

In the code above we are declaring our axis and make use of
KDChartCartesianAxis::setPosition() to give their location.

Let us now define the title text for each of those axis:

...
topAxis->setTitleText ("Abscissa color configured top position");
leftAxis->setTitleText ("Ordinate font configured");
bottomAxis->setTitleText ("Abscissa Bottom");
...

98

setTitleText() and setTitleTextAttributes() are implemented in
KDChartCartesianAxis, we recommend you to consult its interface (see
KDChartCartesianAxis.h) contained in this example and to demonstrate the text
configuration for the title and the labels we want to have a different configuration for
each of our title axis and also for our labels. The process is the same as for configuring
any type of attributes, as follows:

Create an attribute object, configure it and assign it.

...
// configure titles text attributes
TextAttributes taTop (topAxis->titleTextAttributes ());
// color configuration
taTop.setPen(QPen(Qt::red));
// assign to the axis
topAxis->setTitleTextAttributes (taTop);

TextAttributes taLeft (leftAxis->titleTextAttributes ());
// Font configuration
Measure me(taLeft.fontSize());
me.setValue(me.value() * 1.5);
taLeft.setFontSize(me);
leftAxis->setTitleTextAttributes (taLeft);

TextAttributes taBottom (bottomAxis->titleTextAttributes ());
taBottom.setPen(QPen(Qt::blue));
bottomAxis->setTitleTextAttributes (taBottom);

// configure labels text attributes
TextAttributes taLabels;
taLabels.setPen(QPen(Qt::darkGreen));
topAxis->setTextAttributes(taLabels);
leftAxis->setTextAttributes(taLabels);
bottomAxis->setTextAttributes(taLabels);
...

We want our top and bottom axis to display different types of labels as well as to make
sure those labels will be shortened in case the normal labels are too long (see
setShortLabels()).

// configure labels and their shortened versions
QStringList daysOfWeek;
daysOfWeek << "Monday" << "Tuesday" << "Wednesday"
<< "Thursday" << "Friday" ;
topAxis->setLabels(daysOfWeek);

QStringList shortDays;
shortDays << "Mon" << "Tue" << "Wed"
<< "Thu" << "Fri";
topAxis->setShortLabels(shortDays);

QStringList bottomLabels;
bottomLabels << "Day 1" << "Day 2" << "Day 3"
<< "Day 4" << "Day 5";
bottomAxis->setLabels(bottomLabels);

QStringList shortBottomLabels;
shortBottomLabels << "D1" << "D2" << "D3"

99

<< "D4" << "D5";
bottomAxis->setShortLabels(shortBottomLabels);

Note

Labels specified via setLabels take precedence: if a non-empty list is
passed, KD Chart will use these strings as axis labels, instead of
calculating them.

Finally the last step is to assign our axis to the diagram and the diagram to our chart
view.

// add axis
m_lines->addAxis(topAxis);
m_lines->addAxis(leftAxis);
m_lines->addAxis(bottomAxis);

// assign diagram to chart view
m_chart->coordinatePlane()->replaceDiagram(m_lines);

This example is available to compile and run from the examples/Axis/Chart
directory in your KD Chart installation. We recommend you to run it. The widget
displayed by the above code is shown in the figure below.

Figure 5.2. Axis with configured Labels and Titles

Several ready to run examples related to axis are available at the following location
examples/Axis, we recommend you to run them all and consult their implementation.

100

What's next
Legends are also an important element. In the next section we will describe how to add
and configure your chart legend.

101

Chapter 6. Legends
Legends can be drawn for all kind of diagrams and are drawn at the chart level (in
relation to diagram level). We can have more than one legend per chart and add it to our
chart or our widget view by using respectively KDChart::Chart::addLegend() or
KDChart::Widget::addLegend()

Note

Legend is different from all other classes ofd KD Chart, since it can be
displayed outside of the Chart's area. If we want to, we can embedd the
legend into your own widget, or into another part of a bigger grid, into
which we might have inserted the chart.

On the other hand, please note that we need to (MUST) call
KDChart::Chart::addLegend() to get our legend positioned at the
correct position in our chart in case we want to display the legend inside of
the chart which is probably true for most cases.

Let us go through the main configuration features offered by KDChart::Legend. Of
course we also recommend you to consult its interface see KDChartLegend.h as well
as the interfaces for KDChart::Chart and KDChart::Widget to have a complete idea
over how to handle legends and what are the configurations parameters available.

How to configure
In order to add a legend to our chart we need to use the
KDChart::Chart::addLegend() method. The chart takes ownership of the legend
and will take care of removing it by itself. The KDChart::Chart method above and the
ones discussed in the paragraphs are similar for the KDChart::Widget class. In order
to make the following description simpler we will only mention KDChart::Chart in
the following paragraphs.

Tip

You may also wish to use KDChart::Chart replaceLegend(Legend
newLegend , Legend oldLegend) which is also available for the
convenience:

The old legend will be deleted automatically. If its parameter is omitted,
the very first legend will be replaced. In case, there was no legend yet, the
new legend will just be added.

If you want to re-use the old legend, call takeLegend and addLegend, instead of using
replaceLegend.

102

Note

KDChart::Chart::takeLegend()Removes the legend from the chart
without deleting it. The chart no longer owns the legend, it is the caller's
responsibility to delete the legend.

The main configurations elements for KDChart::Legend are:

• ReferenceArea: Specifies or retrieve the reference area for font size of title text and
for font size of the item texts.

• Diagrams: Add, retrieve, replace or remove diagrams associated to the legends.

• Position, alignment and orientation are of course configurable.

• Show Lines: Paint lines between the different items of a legend.

• Title, markers and text attributes can be set, as well as colors and spacing.

Note

The KDChart::Position class, defines positions, using compass
terminologie. Using this class you can specify one of nine pre-defined,
logical points , in a similar way, as you would use a compass to navigate
on a map. We recommend you to consult its interface to learn more about
it (KDChartPosition.h).

Please consult the setters and getters methods available in the KDChart::Legend
interface. See KDChartLegend.h.

Legend Sample
We will now describe those features a more concrete way by looking at the following
sample code based on the Simple Widget example we have been demonstrating above
Chapter 3 - Two Ways - Widget Example. Through the following code we
demonstrate how to add and position a Legend to your chart Widget using a
KDChartWidget.

First include the appropriate headers and bring in the "KDChart namespace":

#include <QApplication>
#include <KDChartWidget>
#include <KDChartBarDiagram>
#include <KDChartPosition>

using namespace KDChart;

103

In this sample code we want to display a bar chart and need to include our
KDChartBarDiagram class. In order to be able to give a location (position) to our
legend in the widget view we also include KDChartPosition.

int main(int argc, char** argv) {
QApplication app(argc, argv);

Widget widget;
widget.resize(600, 600);

QVector< double > vec0, vec1, vec2;

vec0 << -5 << -4 << -3 << -2 << -1 << 0
<< 1 << 2 << 3 << 4 << 5;

vec1 << 25 << 16 << 9 << 4 << 1 << 0
<< 1 << 4 << 9 << 16 << 25;

vec2 << -125 << -64 << -27 << -8 << -1 << 0
<< 1 << 8 << 27 << 64 << 125;

widget.setDataset(0, vec0, "v0");
widget.setDataset(1, vec1, "v1");
widget.setDataset(2, vec2, "v2");
widget.setType(Widget::Bar);

Note

We need to change the default chart type (Line Charts) by calling the
KDChart::Widget::setType method in order to display a bar type
diagram.

Now let us add our legend, set its position and orientation, its title and dataset labels
text:

widget.addLegend(Position::North);
widget.firstLegend()->setOrientation(Qt::Horizontal);
widget.firstLegend()->setTitleText("Bars Legend");
widget.firstLegend()->setText(0, "Vector 1");
widget.firstLegend()->setText(1, "Vector 2");
widget.firstLegend()->setText(2, "Vector 3");
widget.firstLegend()->setShowLines(true);

The interesting point here is how we call KDChart::Widget::firstlegend() to get
a pointer to to our legend object and be able to set up and configure it. We will see
further on in the next code example (see - Section Tips - how to configure the elements
of a legend (e.g Title text, markers, etc....).

Finally we conclude our small application by runnig the usual lines of code.

widget.show();

104

return app.exec();
}

See the screenshot below to view The resulting chart displayed by the above code.

Figure 6.1. A Widget With a simply configured Legend

This example can be compiled and run from the following location of your KD Chart
installation examples/Legends/LegendSimple, we recommend you to do so.

In the Tips section below, we will present you a more elaborate example which uses
KDChart::Chart and where we are setting up our legend elements (title, texts,
markers, etc...).

Tips
In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a
screenshot showing the resulting widget.

Before we go through this example, let us study a very simple chart implementation
with its legend by looking at the following line of codes which we will comment.

105

First and as we always do, we set up a model, declare our diagram, and assign the model
to it and the diagram to our chart after having included the relevant header files.

#include <QtGui>
#include <KDChartChart>
#include <KDChartBarDiagram>
#include <KDChartLegend>
#include <KDChartPosition>
#include <KDChartBackgroundAttributes>
#include <KDChartFrameAttributes>

using namespace KDChart;

class ChartWidget : public QWidget {
Q_OBJECT
public:

explicit ChartWidget(QWidget* parent=0) : QWidget(parent)
{

m_model.insertRows(0, 2, QModelIndex());
m_model.insertColumns(0, 3, QModelIndex());
for (int row = 0; row < 3; ++row) {

for (int column = 0; column < 3; ++column) {
QModelIndex index = m_model.index(row, column, QModelIndex());
m_model.setData(index, QVariant(row+1 * column));

}
}

BarDiagram* diagram = new BarDiagram;
diagram->setModel(&m_model);

m_chart.coordinatePlane()->replaceDiagram(diagram);

We will set the legend position as well as its background and frame attributes and
include those header files on this purpose. That will allow us to make use of the
methods available in those classes.

We will now add a legend and set it up (positions, orientations, etc...):

// Add a legend and set it up
Legend* legend = new Legend(diagram, &m_chart);
legend->setPosition(Position::NorthEast);
legend->setAlignment(Qt::AlignCenter);
legend->setShowLines(false);
legend->setTitleText(tr("Bars"));
legend->setOrientation(Qt::Vertical);
m_chart.addLegend(legend);

The code above handle the attributes specific to a legend, the setters and getters for the
methods we have used here are implemented in the KDChart::Legend class. We
recommend you to consult its interface. See KDChartLegend.h.

Set the Legend marker attributes. We want each dataset's marker to have its own marker
style.

// Configure the items markers
MarkerAttributes lma;
lma.setMarkerStyle(MarkerAttributes::MarkerDiamond);

106

legend->setMarkerAttributes(0, lma);
lma.setMarkerStyle(MarkerAttributes::MarkerCircle);
legend->setMarkerAttributes(1, lma);

Markers are assigned per dataset as you can see above. You can learn more about the
marker styles and the methods available to configure markers in the
MarkerAttributes class interface. See KDChartMarkerAttributes.h.

Let us now configure our legend's items text:

// Configure labels for Legend's items
legend->setText(0, "Series 1");
legend->setText(1, "Series 2");
legend->setText(2, "Series 3");

Each dataset can be assigned its own text. We want to change their pen color for
demonstrating this feature and also to make our legend nicer. We proceed as follow and
configure their text attributes.

TextAttributes lta;
lta.setPen(QPen(Qt::darkGray));
legend->setTextAttributes(lta);

Text attributes configuration and assignment is done as for all other types of attribute.
Create a text attribute object, configure it and assign it. In this case we assign it to our
legend by using its method KDChart::Legend::setTextAttributes().

Tip

If we wish to paint a surrounding line round our legend markers we just
need to configure a pen and assign it to our legend by calling
KDChart::Legend::setPen(). See the following code sample that
demonstrate that.

// Configure a pen to surround
// the markers with a border
QPen markerPen;
markerPen.setColor(Qt::darkGray);
markerPen.setWidth(2);
// Pending Michel use datasetCount() here as soon
// as it is fixed
for (uint i = 0; i < legend->datasetCount(); i++)

legend->setPen(i, markerPen);

Note

Mind the call to KDChartLegend::datasetCount() which allow you

107

to retrieve the number of dataset and simply loop through it.

We want to make our legend more readable by setting a white background inside its
frame.

// Add a background to your legend
BackgroundAttributes ba;
ba.setBrush(Qt::white);
ba.setVisible(true);
legend->setBackgroundAttributes(ba);

As for all attributes settings the code is straight forward, just create the attribute object,
configure it and assign it. We recommend you to have a look at the
KDChartBackgroundAttributes interface. See
KDChartBackgroundAttributes.h

Let us now configure our legend's frame:

FrameAttributes fa;
fa.setPen(markerPen);
fa.setPadding(5);
fa.setVisible(true);
legend->setFrameAttributes(fa);

Same procedure as above. Please note the setVisible() method which is necessary
as the default value hide those attributes.

Finally we need to conclude our small application.

QVBoxLayout* l = new QVBoxLayout(this);
l->addWidget(&m_chart);
setLayout(l);

}

private:
Chart m_chart;
QStandardItemModel m_model;

};

int main(int argc, char** argv) {
QApplication app(argc, argv);

ChartWidget w;
w.show();

return app.exec();
}

#include "main.moc"

The screenshot shows the chart of the code listened above.

108

Figure 6.2. Legend advanced example

This ready to run example is available at the following location examples/
Legends/LegendAdvanced of your KD Chart installation, we recommend you to
study its code, compile and run it.

What's next
You can also add headers and/or footers to your chart to make it more understandable.
In the next section we will go through the several features and configuration
possibilities available in KD Chart 2.0 about "Headers and Footers".

109

Chapter 7. Header and Footers
Headers and footers can be added and configured in several ways. That will be the
subject of this section where we will go through the main features and methods
available. Of course we recommend you to consult the KDChartHeader::Footer
class interface to learn more about those features and methods. See
KDChartHeaderFooter.h

How to configure
In order to add a header or a footer to our chart we need to use the
KDChart::Chart::AddHeaderFooter(HeaderFooter* hf) method. The chart
takes ownership and will take care of removing it by itself. The KDChart::Chart
method above and the ones discussed in the next paragraphs of this section are similar
for the KDChart::Widget class. In order to make this description simpler we will only
mention KDChart::Chart there.

Tip

You may also wish to use KDChart::Chart replaceHeaderFooter(
HeaderFooter* newHf, HeaderFooter* oldHf) which is also
available for the convenience:

The new header or footer to be used instead of the old one must not be
zero. Otherwise the method will just do nothing. The second parameter of
this method is the header or footer to be removed by the new one. This
header or footer will be deleted automatically. If the parameter is omitted,
the very first header or footer will be replaced. In case, there was no
header and no footer yet, the new header or footer will just be added.

If you want to re-use the old header or footer, call takeHeaderFooter and
addHeaderFooter, instead of using replaceHeaderFooter.

Note

KDChart::Chart::takeHeaderFooter()removes the header or footer
from the chart without deleting it. The chart no longer owns the header or
footer, it is the caller's responsibility to delete it.

The main configurations elements for KDChart::HeaderFooter are:

• Type: Can be header or footer.

• Position: Allow the user to define or retrieve the header or footer position.

110

• Text and text attributes can of course also be configured as we will see in the
following examples.

Note

The KDChart::Position class defines positions using compass
terminology. Using this class you can specify one of nine pre-defined,
logical points in a similar way, as you would use a compass to navigate on
a map. We recommend you to consult its interface to learn more about it
(KDChartPosition.h).

Headers and Footers code Sample
We will now describe those features a more concrete way by looking at the following
sample code based on the Simple Widget example we have been demonstrating above
Chapter 3 - Two Ways - Widget Example. Through the following code, we
demonstrate how to add and position a header and a footer to a chart Widget using a
KDChart::Widget.

First include the appropriate headers and bring in the "KDChart" namespace:

#include <QApplication>
#include <KDChartWidget>
#include <KDChartBarDiagram>
#include <KDChartPosition>

using namespace KDChart;

In this sample code we want to display a bar chart and need to include our
KDChart::BarDiagram class. In order to be able to give a location (position) to our
header and our footer in the widget view we also include KDChartPosition.h.

int main(int argc, char** argv) {
QApplication app(argc, argv);

Widget widget;
widget.resize(600, 600);

QVector< double > vec0, vec1, vec2;

vec0 << -5 << -4 << -3 << -2 << -1 << 0
<< 1 << 2 << 3 << 4 << 5;

vec1 << 25 << 16 << 9 << 4 << 1 << 0
<< 1 << 4 << 9 << 16 << 25;

vec2 << -125 << -64 << -27 << -8 << -1 << 0
<< 1 << 8 << 27 << 64 << 125;

widget.setDataset(0, vec0, "v0");
widget.setDataset(1, vec1, "v1");
widget.setDataset(2, vec2, "v2");
widget.setType(Widget::Bar);

111

Note

We need to change the default chart type (Line Charts) by calling the
KDChart::Widget::setType method in order to display a bar type
diagram.

Now let us add our header and footer, set its position and its text.

widget.addHeaderFooter("A default Header - North",
HeaderFooter::Header, Position::North);

widget.addHeaderFooter("A default Footer - South",
HeaderFooter::Footer, Position::South);

As you can see the code above is straight forward and we just need to call
KDChart::Widget::addHeaderFooter() passing the text, type and position we
want to assign to it.

Finally we conclude our small application:

widget.show();

return app.exec();
}

See the screenshot below to view The resulting chart displayed by the above code.

Figure 7.1. A Widget with a header and a footer

112

This example can be compiled and run from the following location of your KD Chart
installation examples/HeadersFooters/HeadersFootersSimple, we recommend
you to do so.

In the Tips section below we will present you a more elaborate example which uses
KDChart::Chart and where we are setting up our headers and footers (texts,
background, frame etc...).

Tips
In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a
screenshot showing the resulting widget.

Before we go through this example, let us study a very simple chart implementation
with a configured header by looking at the following line of codes which we will
comment.

First and as we always do, we set up a model, declare our diagram, and assign the model
to it and the diagram to our chart after having included the relevant header files.

#include <QtGui>
#include <KDChartChart>
#include <KDChartBarDiagram>
#include <KDChartHeaderFooter>
#include <KDChartPosition>
#include <KDChartBackgroundAttributes>
#include <KDChartFrameAttributes>

113

using namespace KDChart;

class ChartWidget : public QWidget {
Q_OBJECT
public:

explicit ChartWidget(QWidget* parent=0)
: QWidget(parent)
{

m_model.insertRows(0, 2, QModelIndex());
m_model.insertColumns(0, 3, QModelIndex());
for (int row = 0; row < 3; ++row) {

for (int column = 0; column < 3; ++column) {
QModelIndex index = m_model.index(row, column, QModelIndex());
m_model.setData(index, QVariant(row+1 * column));
}

}

BarDiagram* diagram = new BarDiagram;
diagram->setModel(&m_model);

m_chart.coordinatePlane()->replaceDiagram(diagram);

We will configure the header position as well as its text, background and frame
attributes and include the header files related to those attributes on this purpose. That
will allow us to make use of the methods available in these classes.

We will now add our header and set it up:

// Add at one Header and set it up
HeaderFooter* header = new HeaderFooter(&m_chart);
header->setPosition(Position::North);
header->setText("A Simple Bar Chart");
m_chart.addHeaderFooter(header);

The code above handle the attributes specific to a headers and footers the setters and
getters for the methods we have been used here are implemented in the
KDChart::HeaderFooter class. We recommend you to consult its interface. See
KDChartHeaderFooter.h.

Let us configure the header text attributes and make sure the font will be resized
together with the widget in case the user resize it.

// Configure the Header text attributes
TextAttributes hta;
hta.setPen(QPen(Qt::blue));

// let the header resize itself
// together with the widget.
// so-called relative size
Measure m(35.0);
m.setRelativeMode(header->autoReferenceArea(),

KDChartEnums::MeasureOrientationMinimum);
hta.setFontSize(m);
// min font size
m.setValue(3.0);
m.setCalculationMode(KDChartEnums::MeasureCalculationModeAbsolute);
hta.setMinimalFontSize(m);

114

// assign
header->setTextAttributes(hta);

Our header text is now displayed using a blue pen, the fonts are configured to take a
relative size.

We also want to configure a white background to make it nicer, and proceed as follows:

// Configure the header Background attributes
BackgroundAttributes hba;
hba.setBrush(Qt::white);
hba.setVisible(true);
header->setBackgroundAttributes(hba);

As for all types of attributes we just need to create the attribute object, configure it and
assign it to our header.

The same process is applied to configure header'sour frame attributes:

// Configure the header Frame attributes
FrameAttributes hfa;
hfa.setPen(QPen (QBrush(Qt::darkGray), 2));
hfa.setVisible(true);
header->setFrameAttributes(hfa);

In the code above we assign a pen to the frame attributes in order to get a Gray line
around the frame.

Note

Same procedure as above. Please note the setVisible() method which
is necessary as the default value hide the attributes above.

Finally we need to conclude our small application.

QVBoxLayout* l = new QVBoxLayout(this);
l->addWidget(&m_chart);
setLayout(l);

}

private:
Chart m_chart;
QStandardItemModel m_model;

};

int main(int argc, char** argv) {
QApplication app(argc, argv);

ChartWidget w;
w.show();

115

return app.exec();
}

#include "main.moc"

See the screenshot below to view the resulting chart displayed by the above code.

Figure 7.2. A Chart with a configured Header

We recommend you to compile and run the above example. It is available at the
following location: examples/HeadersFooters/HeadersFootersParameters .

Headers and Footers Example
In the following implementation we want to be able to:

• Add, edit or remove headers and footers in/from our chart view.

• Configure their positions.

• Set their text

• All of the above operations should be available to the user from the GUI and
performed dynamically.

116

In the example below we are using a KDChart::Chart class and also an home made
TableModel for the convenience. It is derived from QAbstractTableModel.

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This allows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model data files.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the examples/tools directory of your KD Chart installation.

Let us concentrate on our diagram _with_ axis implementation for now and consult the
following files: other needed files like the ui, pro , qrc ,CSV and main.cpp files can be
consulted from the examples/Legends/LegendAdvanced directory of your
installation.

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

30 #include <QDialog>
#include <QMap>

#include "ui_mainwindow.h"
#include "ui_addheaderdialog.h"

35 #include <TableModel.h>

namespace KDChart {
class Chart;
class DatasetProxyModel;

40 class LineDiagram;
}

class MainWindow : public QWidget, private Ui::MainWindow
{

117

45 Q_OBJECT

public:
MainWindow(QWidget* parent = 0);

50 private slots:
void on_addHeaderPB_clicked();
void on_editHeaderPB_clicked();
void on_removeHeaderPB_clicked();
void on_headersTV_itemSelectionChanged();

55
private:

void setupAddHeaderDialog(QDialog* dlg, Ui::AddHeaderDialog& conf) const;

KDChart::Chart* m_chart;
60 TableModel m_model;

KDChart::DatasetProxyModel* m_datasetProxy;
KDChart::LineDiagram* m_lines;

};

65
#endif /* MAINWINDOW_H */

In the above code we bring up the KDChart namespace as usual. As you can see we are
using a KDChart::Chart object (m_chart), a KDChart::LineDiagram object
(m_lines), and our home made TableModel (m_model).

1
/**
** Copyright (C) 2006 Klarälvdalens Datakonsult AB. All rights reserved.
**

5 ** This file is part of the KD Chart library.
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the

10 ** packaging of this file.
**
** Licensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 **
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
** See http://www.kdab.net/kdchart for

20 ** information about KDChart Commercial License Agreements.
**
** Contact info@kdab.net if any conditions of this
** licensing are not clear to you.
**

25 **/

#include "mainwindow.h"

#include <KDChartChart>
30 #include <KDChartHeaderFooter>

#include <KDChartPosition>
#include <KDChartCartesianCoordinatePlane>
#include <KDChartLineDiagram>
#include <KDChartTextAttributes>

35 #include <KDChartDatasetProxyModel>
#include <QComboBox>
#include <QLineEdit>

118

#include <QPen>

40 class HeaderItem : public QTreeWidgetItem
{
public:

HeaderItem(KDChart::HeaderFooter* header, QTreeWidget* parent) :
QTreeWidgetItem(parent), m_header(header) {}

45
KDChart::HeaderFooter* header() const { return m_header; }

private:
KDChart::HeaderFooter* m_header;

50 };

MainWindow::MainWindow(QWidget* parent) :
QWidget(parent)

{
55 setupUi(this);

QHBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m_chart = new KDChart::Chart();
chartLayout->addWidget(m_chart);

60
m_model.loadFromCSV(":/data");

// Set up the diagram
m_lines = new KDChart::LineDiagram();

65 m_lines->setModel(&m_model);
m_chart->coordinatePlane()->replaceDiagram(m_lines);

m_chart->update();
}

70

void MainWindow::setupAddHeaderDialog(QDialog* dlg, Ui::AddHeaderDialog& conf)const
{

conf.setupUi(dlg);
75 conf.textED->setFocus();

const QStringList labels = KDChart::Position::printableNames();
const QList<QByteArray> names = KDChart::Position::names();

80 for (int i = 0, end = qMin(labels.size(), names.size()) ; i != end ; ++i)
conf.positionCO->addItem(labels[i], names[i]);

}

85 void MainWindow::on_addHeaderPB_clicked()
{

QDialog dlg;
Ui::AddHeaderDialog conf;
setupAddHeaderDialog(&dlg, conf);

90 conf.typeCO->setCurrentIndex(0); // let us start with "Header"
conf.positionCO->setCurrentIndex(0);
if(dlg.exec()) {

KDChart::HeaderFooter* headerFooter = new KDChart::HeaderFooter(m_chart);
m_chart->addHeaderFooter(headerFooter);

95 headerFooter->setText(conf.textED->text());
KDChart::TextAttributes attrs(headerFooter->textAttributes());
attrs.setPen(QPen(Qt::red));
headerFooter->setTextAttributes(attrs);
headerFooter->setType(

100 conf.typeCO->currentText() == "Header"
? KDChart::HeaderFooter::Header
: KDChart::HeaderFooter::Footer);

headerFooter->setPosition(
KDChart::Position::fromName(conf.positionCO->itemData(conf.positionCO->currentIndex()).toByteArray()));

105 //headerFooter->show();
HeaderItem* newItem = new HeaderItem(headerFooter, headersTV);
newItem->setText(0, conf.textED->text());

119

newItem->setText(1, headerFooter->type() == KDChart::HeaderFooter::Header
? tr("Header")

110 : tr("Footer"));
newItem->setText(2, conf.positionCO->currentText());
m_chart->update();

}
}

115

void MainWindow::on_editHeaderPB_clicked()
{

if (headersTV->selectedItems().size() == 0) return;
120 HeaderItem* item = static_cast<HeaderItem*>(headersTV->selectedItems().first());

KDChart::HeaderFooter* headerFooter = item->header();
QDialog dlg;
Ui::AddHeaderDialog conf;
setupAddHeaderDialog(&dlg, conf);

125 conf.textED->setText(headerFooter->text());
conf.typeCO->setCurrentIndex(

headerFooter->type() == KDChart::HeaderFooter::Header
? 0 : 1);

conf.positionCO->setCurrentIndex(
130 conf.positionCO->findText(headerFooter->position().printableName()));

if(dlg.exec()) {
headerFooter->setText(conf.textED->text());
headerFooter->setType(

conf.typeCO->currentText() == "Header"
135 ? KDChart::HeaderFooter::Header

: KDChart::HeaderFooter::Footer);
headerFooter->setPosition(

KDChart::Position::fromName(conf.positionCO->itemData(conf.positionCO->currentIndex()).toByteArray()));
item->setText(0, conf.textED->text());

140 item->setText(1, headerFooter->type() == KDChart::HeaderFooter::Header
? tr("Header")
: tr("Footer"));

item->setText(2, conf.positionCO->currentText());
m_chart->update();

145 }
}

150
void MainWindow::on_removeHeaderPB_clicked()
{

if (headersTV->selectedItems().size() == 0) return;
QList<QTreeWidgetItem*> items = headersTV->selectedItems();

155 for(QList<QTreeWidgetItem*>::const_iterator it = items.begin();
it != items.end(); ++it)

{
KDChart::HeaderFooter* headerFooter = static_cast<HeaderItem*>((*it))->header();

#if 0
160 // Note: Despite it being owned by the Chart, you *can* just delete

// the header: KD Chart will notice that and adjust its layout ...
delete headerFooter;

#else
// ... but the correct way is to first take it, so the Chart is no longer owning it:

165 m_chart->takeHeaderFooter(headerFooter);
// ... and then delete it:
delete headerFooter;

#endif
delete (*it);

170 }
m_chart->update();

}

175 void MainWindow::on_headersTV_itemSelectionChanged()
{

removeHeaderPB->setEnabled(headersTV->selectedItems().count() > 0);

120

editHeaderPB->setEnabled(headersTV->selectedItems().count() == 1);
}

180

See the screenshot below to view The resulting chart displayed by the above code.

Figure 7.3. Headers and Footers advanced example

This ready to run example is available at the following location examples/
HeadersFooters/Advanced of your KD Chart installation, we recommend you to
study its code, compile and run it.

What's next
The next chapter will be dedicated to KDChart 2.0 Attributes model which is derived
indirectly from QAbstractProxyModel and gives the user all flexibility to
customizing her's chart and its component at different levels (whole diagram, per index,
per row or column etc....).

121

Chapter 8. Customizing your Chart
Customizing your chart means configuring the attributes available for the different
components of a chart (e.g diagrams, legends, headers and footers etc...). In Chapter 4
- Cartesian Coordinate Plane and Polar Coordinate Plane we have been
looking at the different attributes specific to a certain type of diagram (Line, Bar, Pie,
etc...). In this chapter we will go through the details when it comes to the attributes
related to the elements of a chart and also the ones common to all types of charts.

Attributes Model, Abstract Diagram
The KDChart::AttributesModel class is derived from QAbstractProxyModel
and used internally by the base class for all diagrams KDChart::AbstractDiagram
which setAttributesModel(AttributesModel* model) method associates an
AttributesModel with a diagram.

Note

The diagram does _not_ take ownership of the AttributesModel. This
should thus only be used with AttributesModels that have been explicitely
created by the user. Setting an AttributesModel that is internal to another
diagram is an error.

Let us illustrate the above assertion, the right way is:

// correct
AttributesModel *am = new AttributesModel(model, 0);
diagram1->setAttributesModel(am);
diagram2->setAttributesModel(am);

It would be wrong to proceed as follow:

// Wrong
diagram1->setAttributesModel(diagram2->attributesModel());

To retrieve the attribute model associated to a particular diagram, we can make use of
the KDChart::AbstractDiagram method attributesModel().

Note

By default each diagram owns its own AttributesModel, which should
never be deleted. Only if a user-supplied AttributesModel has been set
does the pointer returned here not belong to the diagram.

122

How it works
Let us make this more concrete by looking at the following methods for settings a Pen
and extracted from KDChart::AbstractDiagram's interface.

void setPen(const QModelIndex& index, const QPen& pen);
void setPen(int dataset, const QPen& pen);
void setPen(const QPen& pen);

Note

KDChart::AbstractDiagram defines the interface, that needs to be
implemented for the diagram, to function within the KDChart framework.
It extends Interview's AbstractItemView.

Those methods allow us to set the Pen to be used respectively: at a given index, for a
given dataset, or for all datasets in the model.

By looking at their implementations we can see how we make use of the
KDChart::AttributesModel methods setData(), setHeaderData(), and
setModelData() to achieve this task.

void AbstractDiagram::setPen(const QModelIndex& index, const QPen& pen)
{

attributesModel()->setData(
attributesModel()->mapFromSource(index),
qVariantFromValue(pen), DatasetPenRole);

}

void AbstractDiagram::setPen(const QPen& pen)
{

attributesModel()->setModelData(
qVariantFromValue(pen), DatasetPenRole);

}

void AbstractDiagram::setPen(int column,const QPen& pen)
{

attributesModel()->setHeaderData(
column, Qt::Vertical,
qVariantFromValue(pen),
DatasetPenRole);

}

The above description to demonstrate how it works for almost all the attributes available
for the configuranble elements of a chart, and the flexibility of this approch.

Note

It is important to know that have three levels of precedence when setting

123

the attributes: Which means that once you have set the attributes for a

• Global: Weak

• Per column: Medium

• Per cell: Strong

the attributes: Which means that once you have set the attributes for a
column or a cell, you will not be able to change those settings by calling
the "global" method to reset it to another value, but instead call the per
column or per index setter as demonstrated in the code above.

In the next section we will have a quick look at the attributes common to all chart types
and elements of a chart and learn about the way to use them.

Data Values Attributes
The Data Value Attributes group all properties that can be set in relation to data value
labels and if and how they are displayed. This includes things like the text attributes
(font, color), what markers are used, and how many decimal digits are displayed, etc.

We recommend you to consult KDChart::DataValueAttributes' interface to find
out more in details what can be done. In this section we will describe quickly its main
properties and go through a commented example that will demonstrates how to proceed
in order to use and configure those attributes.

Data values can be set with some defined text, background, frame and markers. The list
below gives us an overview about the most used features. We will only list the setters
here and explain them. Of course each of those setters has a corresponding getter:

• setVisible(bool visible): Set whether data value labels should be displayed.

• setTextAttributes(const TextAttributes &a): Set the text attributes to use for the
data value labels.

• setFrameAttributes(const FrameAttributes &a): Set the frame attributes to use for
the data value labels area.

• setBackgroundAttributes(const BackgroundAttributes &a): Set the background
attributes to use for the data value labels area.

• setMarkerAttributes(const MarkerAttributes &a): Set the marker attributes to use
for the data values. This includes the marker type.

• void setDecimalDigits(int digits): Set how many decimal digits to use when

124

rendering the data value labels.

The process to configure the data value attributes for a diagram is very simple, and
similar to all other kind of attributes:

• Call the relevant attributes - e.g We want to configure the font and colors we need to
configure the Text attributes and call them as follow: TextAttributes ta(
datavaluesattrinbutes.textAttributes())

• Assign the configurated attributes to your data values attributes. e.g call
datavalueattributes.setTextAttributes(ta).

• set them as visdible implicitly and assign them to the diagram by calling the diagram
method diagram->setDataValueAttributes(datavaluesattributes)

DataValue Attributes Sample code
Let us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the main.cpp file of the examples/
Lines/Parameters slightly modified. We recommend you to compile and run this
example and to study its code.

....
// Display values
// 1 - Call the relevant attributes
DataValueAttributes dva(diagram->dataValueAttributes());

// 2 - We want to configure the font and colors
// for the data values text.
TextAttributes ta(dva.textAttributes());
//rotate if you wish
ta.setRotation(45);

// 3 - Set up your text attributes
ta.setFont(QFont("Comic", 6));
ta.setPen(QPen(QColor(Qt::darkGreen)));
ta.setVisible(true);

// 4 - Assign the text attributes to your
// DataValuesAttributes
dva.setTextAttributes(ta);
dva.setDecimalDigits(4);
dva.setVisible(true);

// 5 - Assign to the diagram
diagram->setDataValueAttributes(dva);

....
// 6 - Assign the diagram to the chart
m_chart.coordinatePlane()->replaceDiagram(diagram);

// make sure there is space to display the
// data value labels at the edges of the data area
m_chart.setGlobalLeading(15, 15, 15, 15);
...

125

As we can see the code is straight forward and the process is similar as for setting all
others types of attributes.

See the screenshot below to view The resulting chart displayed by the above code.

Figure 8.1. A Chart with a configured Data Values Labels

We recommend you to modify, compile and run the example at the following location:
examples/Lines/Parameters.

Text Attributes
TextAttributes encapsulates settings that have to do with text. This includes font,
font size, color, whether the text is rotated, etc...

We recommend studying the KDChart::TextAttributes API documentation to find
out more in details what can be done. In this section we will describe quickly its main
properties and go through a commented example that will demonstrates how to proceed
in order to use and configure those attributes.

Text attributes can be set with some defined font, pen, rotation etc... The text font size
can be fixed or relative (e.g it will adapt to the widget size), the list below gives us an
overview about the most used features. We will only list the setters here and explain
them. Of course each of those setters has a corresponding getter:

126

• setVisible(bool visible): Set whether text attributes should be displayed.

• setFont(const QFont& font): Set the font to be used for rendering the text.

• void setFontSize(const Measure & measure): Set the size of the font used for
rendering text

• setMinimalFontSize(const Measure & measure): Set the minimal size of the font
used for rendering text.

• setRotation(int rotation): Set the rotation angle to use for the text.

• setPen(const QPen& pen): Set the pen to use for rendering the text.

The process to configure the text attributes any elements of a chart is very simple, and
similar to all other kind of attributes:

• Call the text attributes - e.g We want to configure the font and colors we need to
configure the Text attributes and call them as follow: TextAttributes ta(
header.textAttributes())

• Assign the configurated attributes to your header attributes. e.g call
header.setTextAttributes(ta).

Text Attributes Sample code
Let us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the main.cpp file of the examples/
HeadersFooters/HeadersFootersParameters. We recommend you to compile
and run this example and to study its code.

....
// Configure the Header text attributes
TextAttributes hta;
hta.setPen(QPen(Qt::blue));

// let the header resize itself
// together with the widget.
// so-called relative size
Measure m(35.0);
m.setRelativeMode(header->autoReferenceArea(),
KDChartEnums::MeasureOrientationMinimum);
hta.setFontSize(m);
// min font size
m.setValue(3.0);
m.setCalculationMode(
KDChartEnums::MeasureCalculationModeAbsolute);
hta.setMinimalFontSize(m);

// Assign thre text attributes
// to our header.

127

header->setTextAttributes(hta);
...

As we can see the code is straight forward and the process is similar as for setting all
others types of attributes.

See the screenshot below to view the resulting chart displayed by the above code.

Figure 8.2. A Chart with a configured Data Values Labels

We recommend you to modify, compile and run the example at the following location:
examples/HeadersFooters/HeadersFootersParameters.

Markers Attributes
MarkerAttributes encapsulates settings that have to do with markers. This includes there
types (square, diamond, ring etc...), size and colors. For the convenience the user may
also set up a map of markers.

We recommend you to consult KDChart::MarkerAttributes' interface to find out
more in details what can be done. In this section we will describe quickly its main
properties and go through a commented example that will demonstrates how to proceed
in order to use and configure those attributes.

Marker attributes can be set with some defined type(s), size, color etc..., the list below

128

gives us an overview about the most used features. We will only list the setters here and
explain them - Of course each of those setters has a corresponding getter.

• setMarkerStyle(const MarkerStyle style): Set the style of the marker to be used.

• setMarkerSize(const QSizeF& size): Set the size of the marker.

• setMarkerColor(const QColor& color): Set the color of the marker.

• void setVisible(bool visible): Set whether marker attributes should be displayed.

• setMarkerStylesMap(MarkerStylesMap map): Define a map of marker to be used.

Note

As defined in the KDChartMarkersAttributes class'interface the
differnet marker types available are:

....
enum MarkerStyle { MarkerCircle = 0,

MarkerSquare = 1,
MarkerDiamond = 2,
Marker1Pixel = 3,
Marker4Pixels = 4,
MarkerRing = 5,
MarkerCross = 6,
MarkerFastCross = 7 };

...

The process of configuring the marker attributes is very simple and similar to all other
kind of attributes:

• Call the marker attributes - e.g We want to configure their types and sizes we need
to configure the data values marker attributes and call them as follow:
MarkerAttributes ma(dva.markerAttributes())

• Assign the configurated attributes to your data values attributes. e.g call
dva.setMarkerAttributes(ma).

Markers Attributes Sample code
Let us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the mainwindow.cpp file of the
examples/Axis/Parameters. We recommend you to compile and run this example
and to study its code.

129

....
// set up a map with different marker styles
MarkerAttributes::MarkerStylesMap map;
map.insert(0, MarkerAttributes::MarkerSquare);
map.insert(1, MarkerAttributes::MarkerCircle);
map.insert(2, MarkerAttributes::MarkerRing);
map.insert(3, MarkerAttributes::MarkerCross);
map.insert(4, MarkerAttributes::MarkerDiamond);
....
// Configure mmarkers per dataset in this example
const int colCount =

m_lines->model()->columnCount(m_lines->rootIndex());
for (int iColumn = 0; iColumn<colCount; ++iColumn) {

DataValueAttributes dva
(m_lines->dataValueAttributes(iColumn));

MarkerAttributes ma(dva.markerAttributes());
ma.setMarkerStylesMap(map);
ma.setMarkerSize(QSize(markersWidthSB->value(),
markersHeightSB->value()));

}
....
ma.setVisible(true);

// Assign markers attributes
// to Data values attributes
dva.setMarkerAttributes(ma);

//Assign Data Values Attributes to
//Diagram
m_lines->setDataValueAttributes(iColumn, dva);
....

As we can see the code is straight forward and the process is similar as for setting all
others types of attributes.

See the screenshot below to view the resulting chart displayed by the above code.

Figure 8.3. A Chart with configured Data Values Markers

130

We recommend you to modify, compile and run the example at the following location:
See file: examples/Axis/Parameters/mainwindow.cpp.

Background Attributes
Background attributes encapsulates settings that have to do with backgounds for the
divers elements of a chart view. This includes their modes (pixmap and its sub-modes
and brush).

We recommend you to consult KDChart::BackgroundAttributes'interface to find
out more in details what can be done. In this section we will describe quickly its main
properties and go through a commented example that will demonstrates how to proceed
in order to use and configure those attributes.

The list below gives us an overview about the most used features. We will only list the
setters here and explain them. Of course, each of those setters has a corresponding
getter.

• setVisible(bool visible):

• setBrush(const QBrush &brush):

• setPixmapMode(BackgroundPixmapMode mode):

• setPixmap(const QPixmap &backPixmap):

Note

As defined in the KDChart::BackgroundAttributes' interface the
different BackgroundPixmapMode available are:

....
enum BackgroundPixmapMode {

BackgroundPixmapModeNone,
BackgroundPixmapModeCentered,
BackgroundPixmapModeScaled,
BackgroundPixmapModeStretched

};
...

The process to configure the background attributes is very simple, and similar to all
other kind of attributes:

• Call the background attributes and configure it.

131

• Assign the configurated attributes to the element of a chart.
element.setBackgroundAttributes(ba).

Background Attributes Sample code
Let us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the main.cpp file of the examples/
Background. We recommend you to compile and run this example and to study its
code.

....
// Configure the plane's Background
BackgroundAttributes pba;
pba.setPixmap(*pixmap);
pba.setPixmapMode(
BackgroundAttributes::BackgroundPixmapModeStretched);
pba.setVisible(true);
diagram->coordinatePlane()->setBackgroundAttributes(pba);

// Configure the Header's Background
BackgroundAttributes hba;
hba.setBrush(Qt::white);
hba.setVisible(true);
header->setBackgroundAttributes(hba);
....

As we can see the code is straight forward and the process is similar as for setting all
others types of attributes.

See the screenshot below to view the resulting chart displayed by the above code.

Figure 8.4. A Chart with configured Back Ground Attributes

132

We recommend you to modify, compile and run the example at the following location:
See file: examples/Background.

Frame Attributes
Frame attributes encapsulates settings that have to do with frames for the diverse
elements of a chart view. This includes their pen and padding properties.

We recommend you to consult KDChart::FrameAttributes' interface to find out
more in details what can be done. In this section we will describe quickly its main
properties and go through a commented example that will demonstrates how to proceed
in order to use and configure those attributes.

The list below gives us an overview about the most used features. We will only list the
setters here and explain them - Of course each of those setters has a corresponding
getter.

• setVisible(bool visible):

• setPen(const QPen &pen):

• setPadding(int padding):

The process to configure the frame attributes is very simple, and similar to all other kind
of attributes:

133

• Call the frame attributes and configure it.

• Assign the configurated attributes to the element of a chart:
element.setFrameAttributes(fa).

Frame Attributes Sample code
Let us make this more concrete by looking at the following lines of code which
describes the above process. This example is based on the main.cpp file of the
examples/Background. We recommend you to compile and run this example and to
study its code.

....
// Configure the plane Frame attributes
FrameAttributes pfa;
pfa.setPen(QPen (QBrush(Qt::blue), 2));
pfa.setVisible(true);
diagram->coordinatePlane()->setFrameAttributes(pfa);

// Configure the header Frame attributes
FrameAttributes hfa;
hfa.setPen(QPen (QBrush(Qt::darkGray), 2));
hfa.setPadding(2);
hfa.setVisible(true);
header->setFrameAttributes(hfa);
....

As we can see the code is straight forward and the process is similar as for setting all
others types of attributes.

See the screenshot below to view the resulting chart displayed by the above code.

Figure 8.5. A Chart with configured Frame Attributes

134

We recommend you to modify, compile and run the example at the following location:
See file: examples/Background.

Grid Attributes
Grid attributes encapsulates settings that have to do with grids. This includes their pen,
step width, visibility properties ...etc

We recommend you to consult KDChart::GridAttributes' interface to find out
more in details what can be done. In this section we will describe quickly its main
properties and go through a commented example that demonstrates how to proceed in
order to use and configure those attributes.

The list below gives us an overview about the most used features. We will only list the
setters here and explain them. Of course, each of those setters has a corresponding
getter.

• setGridVisible(bool visible): set whether the grid should be painted or not

• setGridStepWidth(qreal stepWidth=0.0): set the distance between the lines of the
grid

• setGridPen(const QPen & pen): set the main grid pen.

• setSubGridVisible(bool visible): Specify whether the sub-grid should be displayed.

• setSubGridPen(const QPen & pen): set the sub-grid pen.

• setZeroLinePen(const QPen & pen): set the zero line pen.

The process to configure the grid attributes is very simple, and similar to all other kind
of attributes:

• Call the grid attributes and configure it.

• Assign the configurated attributes to the plane using one of the setter available, e.g
CartesianCoordinatePlane::setGridAttributes (Qt::Orientation
orientation, const GridAttributes &). or
AbstractCoordinatePlane::setGlobalGridAttributes (const
GridAttributes &)

Note

In case you want to set your grid attributes with orientation using the

135

CartesianCoordinatePlane method above you will need to cast your
AbstractCoordinatePlane* coordinatePlane() const; which
return a pointer to AbstractCoordinatePlane as presented in the
following example.

Otherwise you just need to set the grid attributes globally as follow:

GridAttributes ga = diagram->coordinatePlane()->globalGridAttributes();
ga.setGlobalGridVisible(false);
diagram->coordinatePlane->setGlobalGridAttributes(ga);

Grid Attributes Sample code
Let us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the main.cpp file of the examples/
Grids. We recommend you to compile and run this example and to study its code.

// diagram->coordinatePlane returns an abstract plane.
// if we want to specify the orientation we need to cast
// as follow
CartesianCoordinatePlane* plane =

static_cast <CartesianCoordinatePlane*>
(diagram->coordinatePlane());

// retrieve your grid attributes
// display grid and sub-grid
GridAttributes ga (plane->gridAttributes(Qt::Vertical));
ga.setGridVisible(true);
ga.setSubGridVisible(true);

// Configure a grid pen
QPen gridPen(Qt::magenta);
gridPen.setWidth(3);
ga.setGridPen(gridPen);

// Configure a sub-grid pen
QPen subGridPen(Qt::darkGray);
subGridPen.setStyle(Qt::DotLine);
ga.setSubGridPen(subGridPen);

// Display a blue zero line
ga.setZeroLinePen(QPen(Qt::blue));

// Assign your grid to the plane
plane->setGridAttributes(Qt::Vertical, ga);

As we can see the code is straight forward and the process is similar as for setting all
others types of attributes.

See the screenshot below to view the resulting chart displayed by the above code.

Figure 8.6. A Chart with configured Grid Attributes

136

We recommend you to modify, compile and run the example at the following location.
See file: examples/Grids.

ThreeD Attributes
ThreeDAttributes properties are defined at different levels in the KD Chart 2 API. We
have the properties available to all types of diagram which are defined in the
KDChart::AbstractThreeDAttributes and the ones specific to a type of diagram.
At the moment we support ThreeD for Bar, Lines and Pie diagrams and the ThreeD
attributes for those diagrams types are defined in their own attributes classes. We have
KDChart::ThreeDBarAttributes, KDChart::ThreeDLineAttributes and
KDChart::ThreeDPieAttributes

ThreeD attributes encapsulates settings that have to do with 3D display. This includes
their depth, angle, rotation etc ... depending of the chart type we are working with.

We recommend you to consult the KDChart::ThreeDAttributes' interface to find
out more in details what can be done. In this section we will describe quickly its main
properties and go through a commented example that demonstrates how to proceed in
order to use and configure those attributes.

The list below gives us an overview about the most used features. We will only list the
setters here and explain them - Of course each of those setters has a corresponding
getter.

1 - Generic (common to all diagrams) ThreeD Attributes

137

• setEnabled(bool enabled): set whether threeD display mode is on or off.

• setDepth(double depth): set the depth of the threeD effect (see example below).

2 - ThreeD Bar Attributes - Specific to bar diagrams.

• setAngle(uint threeDAngle): Not implemented yet

3 - ThreeD Line Attributes - Specific to line diagrams.

• setLineXRotation(const uint degrees): rotate the x coordinate.

• setLineYRotation(const uint degrees): rotate the y coordinate.

4 - ThreeD Pie Attributes - Specific to Pie diagrams.

• setUseShadowColors(bool useShadowColors): Not implemented yet

The process to configure the grid attributes is very simple, and similar to all other kind
of attributes:

• Call the 3D attributes and configure it.

• Assign the configurated attributes to the diagram by calling the available method
setThreeDAttributes() method.

ThreeD Attributes Example
Let us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the mainwindow.cpp file of the
examples/Bars/Advanced. We recommend you to compile and run this example and
to study its code.

// Retrieve the threeD attributes for
// the diagram
ThreeDBarAttributes td(m_bars->threeDBarAttributes());

// set its depth property
td.setDepth(depthSB->value());

// Implicitely enable threeD Mode
td.setEnabled(true);

138

// Assign to the diagram
m_bars->setThreeDBarAttributes(td);

// Re-paint
m_chart->update();

As we can see the code is straight forward and the process is similar as for setting all
others types of attributes.

See the screenshot below to view the resulting chart displayed by the above code.

Figure 8.7. A ThreeD Bar Chart

We recommend you to modify, compile and run the example at the following location:
See file: examples/Bars/Advanced.

139

Font Sizes and other Measures
This chapter illustrates how to use the KDChart::Measure class to specify sizes.
Closely related to Measure is the KDChart::RelativePosition class explained in
the section Relative and Absolute Positions following this one.

When and how to use the Measure class
KDChart::Measure is used to specify absolute values or relative measures to be re-
calculated at runtime according to the size of a reference area, e.g. for font sizes or to
define the distance between a text and its anchor point.

• Absolute values are used to set a fixed measure, e.g. when the same font size is to be
used, no matter how large the chart widget is displayed.

• Relative measures specify values that are multiplied by 1/1000 of their reference
area's width (or height, resp.) at runtime. KD Chart uses this to link the default
legend fonts to the chart's size: The legend is adjusted when your widget is resized.

Tip

The KDChart::TextAttributes class can handle both kinds of
measures at the same time: You often might wish to specify a relative size
via setFontSize and set a fixed value via setMinimalFontSize so the
font will be dynamically calculated according to the area size but it will
never be smaller than that specific minimum.

Being a typical value class Measure is commonly initialized by the copy constructor
since you should modify KD Chart's pre-defined settings rather than defining new ones
from scratch. File examples/Lines/Parameters/main.cpp shows how to do that:

// Retrieve the data value attrs from your diagram, and retrieve their text attrs
DataValueAttributes dva(diagram->dataValueAttributes());
TextAttributes ta(dva.textAttributes());

// Retrieve the font size and increase its value
Measure me(ta.fontSize());
me.setValue(me.value() * 1.25);

// Make the data value texts visible
ta.setVisible(true);
dva.setVisible(true);

// Set the font size, set the text attrs, set the data value attrs
ta.setFontSize(me);
dva.setTextAttributes(ta);
diagram->setDataValueAttributes(dva);

140

How to specify absolute values
To specify an absolute value for a Measure that you have initialized via copy
constructor please use the setAbsoluteValue() method:

Measure me(someTextAttributes.fontSize());
me.setAbsoluteValue(16);
someTextAttributes.setFontSize(me);

If you want to declare a new Measure from scratch just set the first two constructor
parameters:

Measure me(16, KDChartEnums::MeasureCalculationModeAbsolute);

In this case you can ommit the third parameter, since the orientation setting is ignored
for absolute values.

How to specify relative values
To specify a relative value for a Measure (no matter if initialized via copy constructor or
not) you can use setValue() together with either setRelativeMode() or both
setReferenceArea() and/or setReferenceOrientation(). So if your measure
was using a fixed font size before you could say:

me.setValue(25);
me.setRelativeMode(m_chart, KDChartEnums::MeasureOrientationMinimum);

Note that setRelativeMode() is a convenience method that will implicitely enable
the relative calculation mode.

When not using setRelativeMode() you need to explicitely call
setCalculationMode(KDChartEnums::MeasureCalculationModeRelative
), if your Measure was not set to this mode before:

me.setValue(25);
me.setReferenceArea(m_chart);
me.setReferenceOrientation(KDChartEnums::MeasureOrientationMinimum);
me.setCalculationMode(KDChartEnums::MeasureCalculationModeRelative);

In both cases the reference area must be derived from KDChart::AbstractArea or
derived from QWidget. The orientation can be Horizontal, Vertical, Minimum,
Maximum, the later ones meaning the area's qMin(width, height) or its qMax(), resp.

141

Relative and Absolute Positions
This chapter covers the KDChart::Position and KDChart::RelativePosition
classes. For details on the closely related KDChart::Measure class see the preceeding
section Font Sizes and other Measures.

What is relative positioning all about?
Introduced for floating objects in KD Chart 2, relative positioning is defining a point in
relation to a reference point, that in turn is specified in relation to a reference area.

This illustration shows the nine position points defined for a bar. See the magnified area
for the relative positioning of negative / positive data value texts.

Figure 8.8. Data value text positions relative to compass points

How to specify a position

1. If necessary name a reference area or define a set of reference points.

2. Use KDChart::Position to pick one of the reference area's compass points.

3. Specify padding and alignment in horizontal and vertical direction.

142

Using Position and RelativePosition
Illustrated on the preceeding page you have seen the most common use of these position
classes: Defining the placement of data value texts in relation to their respective areas.

By default positive and negative data value texts are positioned in different ways: While
positive texts would use the bar's Position::NorthWest their negative counterparts
are located next to the Position::SouthEast point of the bar. Also the positive texts
are using another way of alignment than the negative ones.

The reason for this is to make it easy to specify rotated data value texts: Because of
different reference points and alignment, the texts will look good even when rotated
without the need of adjusting other settings than just the rotation angle itself.

Being a typical value class RelativePosition is commonly initialized by the copy
constructor since you should modify KD Chart's pre-defined settings rather than
defining new ones from scratch, so you could specify non-rotated, centered texts as
shown in the following code, that is using extra indentation to indicate get/set
relationship:

// Retrieve the data value attrs from your diagram
DataValueAttributes dva(diagram->dataValueAttributes());

// Set the text rotation to Zero degrees
TextAttributes ta = dva.textAttributes();

ta.setRotation(0);
dva.setTextAttributes(ta);

// Retrieve the current position settings
RelativePosition posPositive(dva.position(true));
RelativePosition posNegative(dva.position(false));

// Choose the centered position points
posPositive.setReferencePosition(Position::North);
posNegative.setReferencePosition(Position::South);

// Adjust the alignment of the texts:
// horizontally centered to their respective position points
posPositive.setAlignment(Qt::AlignHCenter | Qt::AlignBottom);
posNegative.setAlignment(Qt::AlignHCenter | Qt::AlignTop);

// Set the positions
dva.setPositivePosition(posPositive);
dva.setNegativePosition(posNegative);

// Make the data value texts visible
dva.setVisible(true);

// Set the data value attrs
diagram->setDataValueAttributes(dva);

What's next

143

Advanced charting.

144

Chapter 9. Advanced Charting
In this section we are presenting some examples to demonstrate interesting features
offered by the KD Chart 2.0 API by displaying the resulting widget and giving you a
link to the directory in which you can study the example code, compile and run it.

Example programs to consult
This chapter will grow in relation to the feedback and whishes we get from our
customers.

1 - /examples/Axis/Parameters

Figure 9.1. /examples/Axis/Parameters

2 - /examples/Bars/Advanced

Figure 9.2. /examples/Bars/Advanced

145

3 - /examples/HeadersFooters/HeadersFooters/Advanced

Figure 9.3. /examples/HeadersFooters/HeadersFooters/Advanced

4 - /examples/Legends/LegendAdvanced

Figure 9.4. /examples/Legends/LegendAdvanced

146

5 - /examples/Lines/Advanced

Figure 9.5. /examples/Lines/Advanced

6 - /examples/ModelView

Figure 9.6. /examples/ModelView

7 - /examples/Pie/Advanced

147

Figure 9.7. /examples/Pie/Advanced

8 - /examples/SharedAbscissa

Figure 9.8. /examples/SharedAbscissa

9 - /examples/Widget/Advanced

Figure 9.9. /examples/Widget/Advanced

148

What's next
FAQ.

149

Appendix A. Q&A section

Storing / loading of KD Chart settings

A.A.
1.1. How can I store KD Chart settings to a file?

This can be done by using the KDChart::Serializer class.

Note that KDChart::Serializer is dependent on your Qt library containing the
QtXml module which provides C++ implementations of SAX and DOM.

The decision to have KDChart::Serializer in a separate library was made to
allow you to build KD Chart even if your version of Qt does not include the XML
module.

To build it, just run

cd kdchartserializer
qmake
make (or nmake, for Windows, resp.)

Please refer to the examples stored in kdchartserializer/examples/
showing how to use the serializer and how to connect your diagram(s) to the
correct data model(s) after the serializer has finished running.

Note

This section will grow further according to the most frequently asked
questions to our support.

150

	KD Chart Programmer's Manual
	Table of Contents
	Chapter 1. Introduction
	What You Should Know
	The Structure of This Manual
	What's next

	Chapter 2. KD Chart 2 API Introduction
	Overview
	Code Sample

	KD Chart and Interview
	Code Sample

	Attribute sets
	Code Sample

	Memory Management
	Code Sample

	What's Next

	Chapter 3. Basic steps: Create a Chart
	Prerequisites
	The Procedure
	Two Ways To Your Chart
	Widget Example
	Chart Example

	What's Next

	Chapter 4. Planes and Diagrams
	Cartesian Coordinate Planes
	Bar Charts
	Normal Bar Charts
	Stacked Bar Charts
	Percent Bar Charts
	Code Sample
	Bars Attributes
	Bar Attributes Sample
	Tips and Tricks
	A complete Bar Example
	Line Charts
	Normal Line Charts
	Stacked Line Charts
	Percent Line Charts
	Code Sample
	Lines Attributes
	Line Attributes Sample
	Tips and Tricks
	A complete Line Example
	Point Charts
	Point Sample Code
	Points Attributes
	Tips and Tricks
	A complete Point Example
	Area Charts
	Area Sample Code
	Area Attributes
	Tips and Tricks
	A complete Area Example
	Plotter Charts
	Plotter Sample Code

	Polar coordinate plane
	Pie Charts
	Simple Pie Charts
	Exploding Pie Charts
	Code Sample
	Pies Attributes
	Pie Attributes Sample
	Tips and Tricks
	A complete Pie Example

	Ternary coordinate plane
	Ternary Line Charts

	What's next

	Chapter 5. Axes
	Cartesian Axis
	Ternary Axis
	How to configure
	Cartesian Axes sample

	Tips
	Axis Example

	What's next

	Chapter 6. Legends
	How to configure
	Legend Sample

	Tips
	What's next

	Chapter 7. Header and Footers
	How to configure
	Headers and Footers code Sample

	Tips
	Headers and Footers Example

	What's next

	Chapter 8. Customizing your Chart
	Attributes Model, Abstract Diagram
	How it works

	Data Values Attributes
	DataValue Attributes Sample code

	Text Attributes
	Text Attributes Sample code

	Markers Attributes
	Markers Attributes Sample code

	Background Attributes
	Background Attributes Sample code

	Frame Attributes
	Frame Attributes Sample code

	Grid Attributes
	Grid Attributes Sample code

	ThreeD Attributes
	ThreeD Attributes Example

	Font Sizes and other Measures
	When and how to use the Measure class
	How to specify absolute values
	How to specify relative values

	Relative and Absolute Positions
	What is relative positioning all about?
	How to specify a position
	Using Position and RelativePosition

	What's next

	Chapter 9. Advanced Charting
	Example programs to consult
	What's next

	Appendix A. Q&A section

