KLARALVDALENS
DATAKONSULT AB

e
L 4
AP KD CHART

-

S~n...”n... - 4 bl “/ '
G hhm.“‘.:ltib,/ - -

The contents of this manual and the associated KD Chart software are the property of Klardvdaens
Datakonsult AB and are copyrighted. Any reproduction in whole or in part is strictly prohibited without prior
written permission by Klarélvdalens Datakonsult AB.

KD Chart and the KD Chart logo are trademarks or registered trademarks of Klardlvdalens Datakonsult AB in
the European Union, the United States, and/or other countries. Other product and company names and logos
may be trademarks or registered trademarks of their respective companies.

Table of Contents

R 111 oo [o
What YOU Should KNOWoviiniiiiiiice e 1
The Structure of THISManNUalceininieii e 2
VA 0= oY 01 TP 2

2. KD Chart 2 AP INtrodUCLIONcevieieiie et
(7L< V=T 3
KD Chart and INEEIVIEWvvieiiiiiiieeeeeeeee e 5
ATIOULE SEES ..vivie i 6
Memory Managementooeuiieiiiie e 7
WWEE'S INEXE ..ottt e et e e e eeaaenas 8

3. Basic steps: Create aChartviieeieiiiee e
Prer@UISITESoeeiii e e 9
THEPIOCEAUIE ...ceeiii e 9
TWOWaYSTOYOUr Chartoovvvieiiiici e e 11
WWVNEE'S INEXE ettt ettt ettt e et e st et e e e e e aaenas 15

4. Planes and DIi@gramsScccuuueiiiiieeiiie e
Cartesian Coordinate PlaneSvvieieie i 17
Polar coordinate planeooveuiiiiiiii e 71
ATAY 4 Y 1 87

LT (=<
GBS AN AXIS . ovieiee ittt ettt et e 88
HOW t0 CONFIQUIE ..ottt 89
B] o3P 91
VA 0= oY 1 97

B. LBOENUS ..ot
HOW t0 CONFIQUIE ...cvveceee e 99
LI o= PRSP 102
VA 0= oY 01 PR 112

7. Header and FOOLEI'Souieiiiie et
HOW t0 CONFIQUIE ..o 113
T o P 116
ATAY 4 Y 1 124

8. CUStOMIZING YOUr Chartiiiiiiiiiiii e
Attributes Model, Abstract Diagramccooveeeiviiiiieiiineeieeceeeeene, 125
DataValueS ANDULES ... e 127
TEXE ATIIIDULES ..oeeiieii e 129
Markers AfIIDULESovieiiiiei e 131
Background AttribULESoovvviiiiiei e 134
Frame AttHDULESoeieieieie e e e aenas 136
(Ao N 11 o U1 =T 138
ThreeD ATIIDULEScoeeieiei e 140
Font Sizesand other MEBSUIEScuvinieiiiiiiieeee e 143
Relative and AbSOIULE POSITIONSccvvvviiiiiiieieieeeeeeee e, 145
ATAY 4 Y 1 146

9. AdVanCed Chartingoceeuiuiiiiii e

Example programsto CONSUILviiueiiiiiiieii e
WREE'SNEXT ..t

A. Q&A section

List of Figures

3L A SIMPIEWIAGEL ... 12
B2, A SIMPIECRAIT ... 14
4.1 A NOrMal Bar Chartooeeviieeeee e 18
4.2. A Stacked Bar Chartoooviiiiiiiii e 18
4.3. A Percent Bar Chartooovuiiiiiiiieee e 19
4.4. A SimpleBar ChartWidgetoooviiiiiieii e 21
4.5. Bar with Configured AttribULESoiiiiiii e 26
4.6. A Full featured Bar Chartcooiiiiiiiii e 34
A.7. ANOrmal LINEChartuiiiiiiie e 35
4.8. A Stacked LiNE Chartooevviiiieiiiii e 36
4.9. A Percent LINE Chartoiiiiiiiiieiis e 37
4.10. A Simple Line ChartWidgelcccooiieiiiiiiiiiiiiiee e 39
4.11. Line With Configured AttribULeScc.oviiiiiiiie e 44
4.12. A Full featured Lin@ Chartooieuiiiiiiii e 52
A.13. A POINE CREIT ... 53
4.14. A Full featured Point Chartcocuuiieiiiiiiieeiii e 60
ST AN I A (== N O 1 - | 61
4.16. A Full featured Area Chartcooveuiiiiiiieiie e 71
4.27. A SIMPIEPIE@ Chartc..uiiiiiiie e 72
4.18. An Exploding Pie Chartccoouiiiiiiiiiei e 73
4.19. A SIMPIEPIEWIGEL ... covniiii e 75
4.20. Pie With Configured AttribUtesccoviviiiiiiiiiic e, 80
4.21. A Full featured Pie Chartco.oeviiiiiiicee e 87
5.1. A Simple Widget With AXISocouuiiiiiici e 20
5.2. Axiswith configured Labelsand TitleSccooeiiiiiiiiiiiieen, 97
6.1. A Widget With asimply configured Legendccooeeviiiiiiiiiiennnne. 102
6.2. A Chart with configured Legendc.coooviiiiiiiiiiiii e, 105
6.3. Legend advanced eXampleoovuieeiiieeie e 112
7.1. A Widget With aHeader and @aFOOtercovvviviiiiiiiiiiiieiiiieciie 115
7.2. A Chart with aconfigured Headercccooeiiiiiiiiiiiiiii e, 119
7.3. Headers and Footers advanced examplecccoiiiiiieiiiieiiiiiiieeeen, 124
8.1. A Chart with a configured DataValuesLabelscccoceeieiiiiiiininnnnn. 129
8.2. A Chart with a configured DataValuesLabelscoocovveviiiiiiinecnnnnn, 131
8.3. A Chart with configured DataValues Markersccoceueveviiieiiineennnnn, 133
8.4. A Chart with configured Back Ground Attributesc.ccccevvveineennnnn. 135
8.5. A Chart with configured Frame Attributescoooeviiiiiiiiii, 137
8.6. A Chart with configured Grid Attributesccoooiiiiiiiiiiin 139
8.7. AThreeD Bar Chartccuuiiiuniiiiieii e 142
8.8. Data value text positions relative to compass Pointscoceevveeevneennnn. 145
9.1. /exampl e/ AXISParamELEr'Sccvuuieiiieeiie e 148
9.2. /examples/Bars/AGVaNCedviiiiiiiieiiii e 148
9.3. /examples/HeadersFooters/HeadersFooters/Advancedc.cccuueeenn. 149
9.4. Jexamples/Legends/LegendAdvanCedcooeevviieiiiinieiiiiineeiiie 149
9.5. /examples/LineS/AQVANCEdcouuiiii i 150
9.6. /examples/MOdEIVIBWuiiiiii e 150
9.7. lexamples/Pie/AAVaNCediviiiieiie e 151

9.8. /examples/SharedAbscissa

9.9. /examples/Widget/AdvanCedco.veieiiiiiiiiiiiei e

Vi

Chapter 1. Introduction

KD Chart is Klarélvdalens Datakonsult AB's charting package for Qt applications. This
isthe KD Chart Programmer's Manual. It will get you started with creating your charts
and provides lots of pointers to the many advanced featuresin KD Chart.

» Depending on your KD Chart version, you will find different | NSTALL files that
explain how to install KD Chart on your platform and a step by step description
about how to build it from sources.

e KD Chart also comes with an extensive Reference Manual generated directly from
the source code itself.

Y ou should refer to it in conjunction with this Programmer's Manual.

e What isKD Chart?

KD Chart is a tool for creating business and scientific charts, and is the most
powerful Qt component of its kind. Besides having al the standard features, it also
enables the developer to design and manage a large number of axes and provide
sophisticated means of layout customization. Since all configuration settings have
reasonable defaults you can usually get by with setting only a handful of parameters
and relying on the defaults for the rest.

* What can we use KD Chart for?
KD Chart isused by avariety of programs for many different purposes.

The above example shows how KD Chart is used for visualizing flood events in a
river; other samples on our web site at htt p: // waww. kdab. net / kdchart show
how KD Chart is used for monitoring seismic activity. It is no coincidence that the
current version of the KOffice productivity suite uses our library.

* Display a view with small diagrams and arrows showing how the main classes
work together

What You Should Know

You should be familiar with writing Qt applications, as well as have a working C++
knowledge. When you are in doubt about how a Qt class mentioned in this
Programmer's Guide works, please check the Qt reference documentation or a good
book about Qt. A more in-depth introduction to the API can be found in the file doc/
KDChart-2.0- APl - I ntroduction. Also to browse KD Chat APl Reference
documentation start with thisfile: doc/ r ef man/ i ndex. ht ni .

The Structure of This Manual

How we will proceed to present KD Chart?

This manual starts with an introduction to the KD Chart 2.0 API before going through
the basic steps and methods for the user to create her own chart.

The following Chapter 4 Coordi nate planes and Diagrans will provide the
reader with more details about the different chart types supported and the information
you need to know in order to use KD Chart's featuresin the best possible way.

The subsequent chapters contain more advanced customizing material like how to
specify colors, fonts and other attributes if you don't want to use KD Chart's default
settings. How to create and display headers, footers and legends as well as how to
configure your chart axesis also a part of these chapters.

Chapter 9 Advanced Charting, will guide you through KD Chart other more
advanced features and describe the way to use them (frames and backgrounds, data
values, axis and grid manipulations etc...). It will aso show in details a number of
interesting features like Interactive and Multiple charts or Zooming.

We provide you with lots of sample code combined with screenshots that show the
resulting display. We recommend our readers to try and run the sample code and
experiment with the various settings.

What's next

In the next chapter we introduce you to the KD Chart 2.0 new API.

Chapter 2. KD Chart 2 API Introduction

Version 2.0 of KD Chart fully supports and builds on the technologies introduced with
Qt 4. The charting engine makes use of the Arthur and Scribe painting and text
rendering frameworks to achieve high quality visual results. KD Chart 2.0 aso
integrates with the Interview framework for model/view separation and, much like Qt 4
itself, provides a convenience Widget class for those cases where that is too complex to
use.

Overview

KD Chart 2.0 API strives for maximum consistency with the concepts and API style
found in Qt 4. Of course, this means breaking source compatibility in several places, but
like Trolltech, we have made a conscious decision that it would be better to clean up the
API now, than to carry it with usinto the next KD Chart generation.

Note

Wherever possible, compatibility methods and classes have been, or will
be, provided.

The core of KD Chart's 2.0 API is the KDChart:: Chart class. It encapsulates the
canvas onto which the individual components of a chart are painted, manages them and
provides access to them. There can be more than one KDChart: : Di agram on a
KDChart:: Chart. How they are laid out is determined by which axes, if any, they
share (more on axes below).

KDChart : : Di agr am subclasses for the various types of charts are provided, such as
KDChart : : Pi eDi agram and users can subclass KDChart : : Abst ract Di agr am (or
one of the other Diagram classes starting with Abstract, which are designed to be base
classes) to implement custom chart types. A typical use of a simple Bar Diagram looks
likethis:

Code Sample

usi ng namespace KDChart ;

Bar Di égr am *bars = new Bar Di agram

bar s- >set Model (&m nodel);

chart->coordi nat ePl ane() - >r epl aceDi agram(bars);

In Chapter 3Basi ¢ steps: Create a Chart we will make this somewhat abstract
description more concrete by looking at some complete examples (Widget and Charts),

which we recommend you to compile and run.

For now, in order for you to get an overview about the KD Chart 2.0 APl and its
features you need to understand the following base concepts:

e Each diagram has an associated Coordinate Plane (Cartesian by default), which is
responsible for the translation of data values into pixel positions. It defines the scale
of the diagram, and all axes that are associated with it. This makes implementing
diagram subclasses (types) much easier, since the drawing code can delegate the
complete coordinate cal culation work to the coordinate plane.

» Each coordinate plane can have one or more diagram associated to it. Those
diagrams will share the scale provided by the plane. A chart can also have more than
one coordinate plane. This makes it possible to have multiple diagrams (e.g a line
and a bar chart) using the same or different scales and displayed next to, or on top of
each other in the same chart.

* Inorder to share an axis among two planes (and aso diagrams) we just need to add
it to both diagrams. The Chart lay-outing engine will take care of adjusting positions
accordingly.

A chart can aso have a number of optional components such as Legends, Headers/
Footers or custom KDChart : : Ar ea subclasses that implement user-defined elements.
The API for manipulating these is similar for al of them.

For example, in order to add an additional header you can use code like this:

Header Foot er * additi onal Header = new Header Foot er;
addi ti onal Header - >set Posi ti on(NorthWest);
chart - >addHeader Foot er (addi ti onal Header);

In the next section, we will explain further how ownership of such components is
maintained.

Finally, and concluding this overview, al classes in the KD Chart 2 APl are in the
"KDChart" namespace, to allow concise class names, while still avoiding name clashes.
Unless you prefer to use the "KDChart::" prefix on al class names in your code, you
can add the following line at the top of your implementation files, to make all namesin
the "KDChart" namespace available in that file:

usi ng nanespace KDChart;

Like Qt, KD Chart provides STL-style forwarding headers, alowing you to omit the
".h" suffix when including headers. To bring the bar diagram header into your
implementation file, you could therefore write:

#i ncl ude <KDChart Bar Di agr an»>

or
#i ncl ude <KDChart Bar Di agr am h>

Note

File names of header and implementation files al have the "KDChart"
prefix in the name. The definition of KDChart: : Bar Di agr am is thus
located in the file KDChar t Bar Di agr am h.

KD Chart and Interview

KD Chart 2.0 follows the Interview model/view paradigm introduced by Qt 4:

Any KDChart::AbstractDi agram subclass (which in turn inherits
QAbst ract I t enVi ew) can display data originating from any QAbst r act | t emhodel
object. In order to use your data with KD Chart diagrams, you need to either use one of
Qt's built-in models to manage it, or provide the QAbst r act I t emvbdel interface on
top of your aready existing data storage by implementing your own model that talks to
that underlying storage.

KDChart : : W dget isa convenience class that provides a simpler, but less flexible way
of displaying datain a chart. It stores the data it displays itself, and thus does not need a
QAbst ract I t emvbdel . It should be sufficient for many basic charting needs but it is
not meant to handle very large amounts of data or to make use of user-supplied chart

types.

KDChart : : W dget is provided in order to get started quickly without having to master
the complexities of the new Interview framework in Qt 4. We would still advise to use
KDChart::Chart so that you can make use of al the benefits that Interview brings you
once you have a good undertanding of it.

In order to better understand the relationship between KDChart::View and
KDChart::Wdget better, compare for example KDChart::View and
KDChart :: W dget to Qi st Vi ewand QLi st W dget in the Qt 4 documentation. Y ou
will clearly notice the similarities.

Code Sample

Let us make this more concrete by looking at the following lines of code where we are
using Qst andar dI t emvbdel to store the data which will be displayed by the diagram
inaKDChar t Chart widget.

/'l set up your nodel
m nodel . 1 nsert Rows(0, 2, Qvobdel I ndex());
m nodel .insertColums(0, 3, Qvbdellndex());

for (int row = 0; row < 3; ++row) {
for (int colum = 0; colum < 3; ++colum) {
Qvbdel | ndex i ndex =
m_nodel . i ndex(row, columm, Qvbdel | ndex());
m nodel . set Dat a(i ndex, Qvariant(rowt+l * colum));

In order to assign the model above to your diagram and display it you would proceed as
follow:

KDChart : : Bar Di agr ant di agram = new KDChart: : Bar Di agr am
di agr am >set Model (&m nodel) ;
m chart. coordi nat ePl ane() - >r epl aceDi agr an(di agram ;

Using KDChar t W dget we would use code as follow:

KDChart W dget wi dget ;

Qvect or< doubl e > vecO, vecl;

vecO << -5 << -4 << -3 << -2 << -1 << 0 ...;
vecl << 25 << 16 << 9 << 4 << 1 << 0 ...;

wi dget . set Dataset (0, vecO, "Linear");

wi dget . set Dataset(1, vecl, "Quadratic");
wi dget . show() ;

We recommend you to read KDChart Chart . h and KDChart W dget . h to learn more
about those classes and what they can do. Also compile and run the complete examples
that describe very simply the two ways you can use to display a Chart.

Attribute sets

The various components of a chart such as legends or axes have attribute sets associated
with them that define the way they are laid out and painted. For example, both the chart
itself and all areas have a set of KDChart : : Backgr oundAt t ri but es, which control
whether there should be a background pixmap, or a solid background color. Other
attribute sets include frame attributes or grid attributes. The default attributes provide
reasonable, unintrusive settings, such as no visible background and no visible frame.

These attribute sets are passed by value, they are intended to be used much like Qt's
QPen or QBrush. As shown below:

Code Sample

KDChart:: TextAttributes ta;

ta.setPen(Qt::red);

ta.setFont(QFont("Helvetica"));
chart->| egend()->set Text Attri butes(ta);

6

All attribute sets can be set per cell, per column or per model, and only be queried per
cell. Access at the cell level only ensures that the proper fallback hierarchy can be
observed. If there is a value set at cell level, it will be used, otherwise the dataset
(column) level is checked. If nothing was found at the dataset level, either the model
wide setting is used, and if there is none either, the default values will be applied. All of
this happens automatically, so that the code using these values only has to ask the cell
for its attributes, and will get the correct values. This avoids duplicating the fallback
logic all over thelibrary and the application, and avoids thus (expensive) error handling.

When using attributes sets, you need to be aware of this fallback hierarchy, because e.g.
per-cell changes will hide per-column changes. (see files /src/KDChart* Attributes.h)

Memory Management

As a general rule, everything in a KDChart::Chart is owned by the chart. Manipulation
of the built-in components of a chart, such as for example a legend, happens through
mutabl e pointers provided by the view, but those components can also be replaced.

Code Sample

Let us make this more concrete by looking at the following lines of code.

/1 set the built-in (default) Iegend visible
m chart->| egend()->setPosition(North);

/'l replace the default |legend with a custom one
//the chart view will take ownership of the allocated
//menory and free the old | egend

KDChart: : Legend *nyLegend =

m chart - >repl aceLegend(new Legend);

Similarly, inserting new components into the view transfers ownership to the chart.
Notice that the same procedure has to be applied for a diagram, too.

/] add an additional |egend, chart takes ownership
chart - >addLegend(Legend);

Removing a component does not de-allocate it. If you "take" a component from a chart
or diagram, you are responsible for freeing it as appropriate.

(seefiles/src/{ KDChartChart.h, KDChartLegend.h})

Notice how this pointer-based access to the components of a chart is different from the

value-based usage of the attribute classes; the latter can be copied around freely, and are
meant to be transient in your code; they will be copied internally as necessary. The
reason for the difference, of course, is polymorphism.

What's Next

Basic steps: Create a Chart or a Widget.

Chapter 3. Basic steps: Create a Chart

As described in the previous chapter, there are two ways to create a chart:

e KDChart::Wdget is providing a limited set of functions as listed in
KDChar t W dget . h. Its purpose is to provide a convenient and simple way of
displaying a chart for people who do not want to learn about the new Qt Interview
system, or who do not care about more complicated details like the Coordinate Plane
and other classes provided by the KD Chart 2 API.

e The purpose of KDChart : : Chart isto give the user accessto the full power of both
the new Qt and the new KD Chart.

Basically, KDChart::Wdget has been designed for beginners, while
KDChart:: Chart is designed for experienced users and/or users who need more
features and flexibility. Once again, we recommend you to check out both interfaces for
those classes in order to give yourself aidea about which of the classes better matches
your needs.(See KDChar t W dget . h and KDChar t Chart. h).

Prerequisites

As described above (Section KD Chart and Interview), a prerequisite for using the full
KD Chart APl is that the data to be charted is made available through a class
implementing the QAbst r act I t emvbdel interface. Before looking at some code, let us
show you afew top-level classes of the KD Chart 2 API:

» The "chart" is the central widget acting as a container for al the charting elements,
including the diagrams themselves, itsclassis called KDChar t : : Chart .

A "chart" can hold severa coordinate planes (Cartesian and polar coordinates are
supported at the moment) each of which can hold several diagrams.

» The "coordinate plane" (often called the "plane") represents the entity that is
responsible for mapping the values to positions on the widget. The plane is also
showing the (sub-)grid lines. There can be several planes per chart.

* The "diagram” is the actual plot (bars, lines and other chart types) representing the
data. There can be several diagrams per coordinate plane.

The Procedure

Let us go through the general procedure for creating a chart, without drilling down into
the details too much at this point. We will then build a complete example and create a
small application displaying a chart using KDChart W dget and KDChart Chart
respectively.

First of al, we need to include the appropriate headers, and bring in the "KDChart"
namespace:

#i ncl ude <KDChart Chart >
#i ncl ude <KDChart Li neDi agr an»
usi ng namespace KDChart ;

/1 Add the widget to your |ayout |ike any other QN dget:
HBoxLayout * chart Layout = new QHBoxLayout(chartFrame);
m chart = new Chart();

chartLayout - >addW dget (m chart);

In this example, we will create a single line diagram, and use the default Cartesian
coordinate plane, which is already contained in an empty Chart object.

/!l Create a line diagram and associate the data nodel to it
m | ines = new Li neDi agran();
m | i nes- >set Mbdel (&m nodel);

/'l Replace the default diagram of the default coordinate
/Il plane with your newy created one.

/1 Note that the plane takes ownership of the diagram
/! so you are not allowed to delete it.

m chart - >coor di nat ePl ane() - >repl aceDi agran(m.lines);

Adding elements such as axes or legends s straightforward as well:

Cartesi anAxis *yAxis = new CartesianAxis (mlines);
yAxi s->set Position (KDChart:: CartesianAxis::Left);

/1 the diagramtakes ownership of the Axis
m | i nes->addAxi s(yAxis);

| egend = new Legend(m.lines, mchart);
m chart - >addLegend(|egend);

Y ou can adjust and fine-tune various aspects of the diagrams, planes, legends, etc...

Much like Qt itself, KD Chart uses a value-based approach to these attributes. In the
case of diagrams, most aspects can be adjusted at different levels of granularity. The
QPen that is used for drawing datasets (lines, bars, etc...) can be set either for one data
point within a dataset, for a dataset or for the whole diagram. See the file
KDChar t Abstract Di agram h:

voi d set Pen(const Qwdel | ndex& i ndex, const QPen& pen);
voi d setPen(int dataset, const QPen& pen);

10

voi d set Pen(const QPen& pen);

To useadark gray color for al linesin your example chart, you would write:

QPen pen;

pen.setColor(Q::darkGay);
pen.setWdth(1);

m | i nes- >set Pen(pen);

Attributes that form logical groupings are combined into collection classes, such as
GidAttributes, Dat aVal ueAttri butes, Text Attri butes, €etc....

This makes it possible to keep sets of such properties around and swap them in one step,
based on program state. However, you might often want to adjust just one or a few of
the default settings, rather than specifying a complete new set. Thusin most cases, using
the copy constructor of the settings class might be appropriate, so in order to use a
special font for drawing alegend, for example, you would just write:

Text Attributes ta(|egend->textAttributes());
ta.set Font(nyfont);
| egend- >set Text Attribut es(ta);

We will continue with more examples and more detailed information about al those
points in the next sections and chapters. Also, we recommend you to check out and run
the exampl es shipped together with your KD Chart package.

Two Ways To Your Chart

We will now go through the basic steps of creating a simple chart widget, first using
KDChart :: W dget and then KDChart : : Chart . This will give us an overview about
how to proceed in both cases.

Widget Example

We recommend you to read, compile and run the following example. It is available at
the following location of your KD Chart installation: exanpl es/ W dget / Si npl e.

1

AR R R AR R R R EREEEEEEREEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEE]

** Copyright (C) 2006 Kl arAsl vdal ens Datakonsult AB. Al rights reserved.

* %

5 ** This file is part of the KD Chart library.
* %
** This file may be distributed and/or nodified under the terns of the
** GNU Ceneral Public License version 2 as published by the Free Software
** Foundati on and appeari ng inthe file LICENSE. GPL included in the
10 ** packaging of this file

11

15

20

25

30

35

40

45

50

* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

Li censees hol ding valid commercial KD Chart |icenses may use this file in
accordance with the KD Chart Conmercial License Agreenent provided with
the Sof tware.

This file is provided AS | S with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE.

See http://ww. kdab. net/ kdchart for
i nformati on about KDChart Commercial License Agreenents.

Contact info@adab.net if any conditions of this
licensing are not clear to you.

**/

#i ncl ude <QAppli cation>
#i ncl ude <KDChart W dget >

int

mai n(int argc, char** argv) {
QAppl i cation app(argc, argv);

KDChart:: Wdget w dget;
wi dget . resi ze(600, 600);

Qvect or< doubl e > vecO, vecl, vec2;

vecO << -5 << -4 << -3 << -2 << -1 << 0
<< 1 << 2 << 3 << 4 << 5;

vecl << 25 << 16 << 9 << 4 << 1 << O
<< 1 << 4 << 9 << 16 << 25;

vec2 << -125 << -64 << -27 << -8 << -1 << 0
<< 1 << 8 << 27 << 64 << 125;

wi dget . set Dat aset (0, vecO, "Linear");

wi dget . set Dataset (1, vecl, "Quadratic");
wi dget . set Dataset (2, vec2, "Cubic");

wi dget . show() ;

return app. exec();

The result of the code above will display the simple widget presented in the screenshot
below.

Asyou can see, the code is straightforward:

Include the headers and bring in the Chart namespace.

Declare your KDChar t W dget

UseaQVect or to store the data to be displayed.

Assign the stored data to the widget, using one of the available set Dat aset ()
methods.

12

Figure3.1. A Simple Widget

Of coursg, it is possible to add new elements like Title, Headers, Footers, Legends, or
Axes to this simple widget as we will see later in greater detail. Notice aso that the
default diagram displayed by KDChart W dget is a KDChart Li neDi agram In the
following example, we will look a how to display a Chart widget using
KDChart Chart .

Chart Example

We recommend you to read, compile and run the following example. It is available at
the following location of your KD Chart installation: / exanpl es/ W dget / Si npl e

1

AR R AR R R R R R R R R R R R

* %
* %
5 * %
* *
* *
* *
* *
10 **
* %
* %
* *
* *
5 oo
* *
* *
* %
* %
Zol
* *
* *
* *

Copyright (C) 2006 Kl arAal vdal ens Dat akonsult AB. All rights reserved.
This file is part of the KD Chart library.

This file may be distributed and/or nodified under the terms of the
GNU General Public License version 2 as published by the Free Software
Foundation and appearing in the file LICENSE. GPL included in the
packagi ng of this file.

Li censees hol ding valid conmercial KD Chart licenses nay use this file in
accordance with the KD Chart Conmercial License Agreenent provided with
the Software.

This file is provided AS IS with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.

See http://ww. kdab. net/ kdchart for
i nformati on about KDChart Commercial License Agreenents.

Contact info@dab.net if any conditions of this
|icensing are not clear to you.

13

* %
25 **/

#i ncl ude <QAppli cati on>
#i ncl ude <KDChart W dget >

30 int main(int argc, char** argv) {
QApplication app(argc, argv);

KDChart:: Wdget w dget;
wi dget . resi ze(600, 600);
35
Qvect or< doubl e > vecO, vecl, vec2;

vecO << -5 << -4 << -3 << -2<<-1%<<0
<< 1 << 2 << 3 << 4 <5
40 vecl << 25 << 16 << 9 << 4 << 1 << 0
<< 1 << 4 << 9 << 16 << 25;
vec2 << -125 << -64 << -27 << -8 << -1 << 0
<< 1 << 8 << 27 << 64 << 125;

45 wi dget . set Dataset(O, vecO, "Linear");
wi dget . set Dataset (1, vecl, "Quadratic'
wi dget . set Dataset (2, vec2, "Cubic");

wi dget . show() ;

")

50
return app. exec();

In this example, we are making use of Qst andar dl t enivbdel in order to insert and
store the data to be displayed by the diagram. We are aso implicitly using a
KDChar t Bar Di agr am to which we assign the model. See below the resulting chart
widget created by this example.

Figure3.2. A Simple Chart

14

We can of course add more elements to this chart and change its default attributes as
described above.

We will see in more detail how to configure those attributes (Pen, Color, etc ...)and add
the various elements (Axes, Legend, Headers etc...) later.

What's Next

In the next chapter, we will describe the different available chart types (diagrams) and
their coordinate planes. For each chart type, we will look at the attributes available for
this particular type, and give you afew examples.

15

Chapter 4. Planes and Diagrams

At the moment, KD Chart supports two types of planes in order to display the different
types of diagrams it supports.

» A Cartesian coordinate plane, determined by a horizontal axis and a vertical axis,
often called the x axisand y axis.

e A Polar coordinate plane which makes use of the radius or the polar angle which
defines the position of apoint on a plane.

This chapter tells you how to change the chart type from the default to any one of the
other types. All of the chart types provided by KD Chart are presented here with the
help of some sample code and/or small programs and their screenshots.

It will also give us an idea about which chart type could be appropriate for a specific
purpose, and provides information about the features that are available for each type of
chart. Let us first go through some important concept concerning the planes and their
relation to the diagrams and the chart view itself.

Each coordinate plane can have one or more diagram associated to it. Those diagrams
will share the scale provided by the plane. A chart can aso have more than one
coordinate plane. This makesit possible to have multiple diagrams using different scales
and displayed next to, or on top of each other in the same chart.

Note

There are two ways in which planes can be caused to interact in where
they are positionned layouting wise: Thefirst is the reference plane.

By using
Abst ract Coor di nat ePl ane: : set Ref er enceCoor di nat ePl ane()
the user force the calling plane to be layouted in the same cell in as the
planeit isreferenced too (overLaying).

Also when planes share an axis they will be layed out in relation to each
other as suggested by the position of the axis. If, for example Planel and
Plane2 share an axis at position Left, that will result in the layout: Axis
Planel Plane 2, verticaly. If Planel also happens to be Plane2's reference
plane, both planes are drawn over each other.

The reference plane concept allows two planes to share the same space
even if none has axis, and in case there are shared axis, it is used to decide
whether the planes should be painted on top of each other or layed out
vertically or horizontally next to each other.

The above concept is illustrated in exanpl es/

16

Shar edAbsci ssa/ Over | ayedDi agr ans and exanpl es/
Shar edAbsci ssa/ Separ at eDi agr ans, we recommend you to study
those examples.

Cartesian Coordinate Planes

KD Chart uses the Cartesian coordinate system, and in particular its
KDChart : : Cart esi anCoor di nat ePl ane class for displaying chart types such as
lines, bars, paints, etc.

In this section, we will describe and present al of the chart types using the default
Cartesian coordinate plane.

In general, in order to implement a particular type of chart, just create an object of this
type by calling KDChar t [t ype] Di agr am or if your are using KDChar t W dget , call its
set Type() method and specify the appropriate chart type (e.g. Widget::Bar,
Widget::Line, etc.)

Bar Charts
Tip

Bar charts are the most common type of charts and can be used for
visualizing almost any kind of data. Like the Line Charts, the bar charts
can be theideal choice to compare multiple series of data.

A good example for using a bar chart would be a comparison of the sales
figures in different departments, perhaps accompanied by a High/Low
Chart showing the key figures of each day.

Your Bar Chart can be configured with the following (sub-)types as described in detail
in the following sections:

* Normal
» Stacked
e Percent

Normal Bar Charts
Tip

17

In anormal bar chart, each individual value is displayed as a bar by itself.
This flexibility allows you to compare both the values in one series, and
values of different series.

Figure4.1. A Normal Bar Chart

KD Chart's default type is the normal bar chart, so no method needs to be called in order
to get one when using KDChar t Bar Di agr am After displaying another sub type, you
can return to the normal one by calling set Type(Normal).

Stacked Bar Charts
Tip
Stacked bar charts focus on comparing the sums of the individual valuesin

each data series, but aso show how much each individua value
contributes to its sum.

Figure4.2. A Stacked Bar Chart

18

Stacked mode for bar charts is activated by calling the KDChar t Bar Di agr amfunction
set Type(Stacked).

Percent Bar Charts
Tip
Unlike stacked bar charts, percent bar charts are not suitable for comparing

the sums of the data series, but rather focus on the respective contributions
of their individual values.

Figure4.3. A Percent Bar Chart

19

Percent: Percentage mode for bar charts is activated by cadling the
KDChar t Bar Di agr amfunction set Type(Percent).

Note

Three-dimensional look of the bars does not require a separate diagram
type; you can enable it for all types (Nor mal , St acked, and Per cent) by
setting its ThreeD attributes; we will describe this in the "Bars Attributes’
section further on.

Code Sample

For now, let us make the above description more concrete by looking at the following
code sample based on the Si npl e W dget example you have already seen. In this
example, we show you how to configure your bar diagram and change its attributes
when working with aKDChar t W dget .

First, include the appropriate headers and bring in the "KDChart" hamespace:

#i ncl ude <QApplicati on>

#i ncl ude <KDChart W dget >

#i ncl ude <KDChart Bar Di agr an»>
#i ncl ude <QPen>

usi ng namespace KDChart ;

We need to include KDChar t Bar Di agr amin order to be able to configure some of its
attributes as we will see later.

int min(int argc, char** argv) {

QApplication app(argc, argv);

W dget widget;

/1 our widget can be configured

/1l as any Q@ W dget

wi dget . resi ze(600, 600);

/] store the data and assign it

Qvect or< doubl e > vecO, vecl;

vecOD << 5 <« 4 <« 3 <« 2 <1< O
<< 1 << 2 << 3 << 4 << 5;

vecl << 25 << 16 << 9 << 4 << 1 << 0
<< 1 << 4 << 9 << 16 << 25;

wi dget . set Dat aset (0, vecO, "vecO");

wi dget . set Dataset (1, vecl, "vecl");

We want to change the default line chart type to a bar chart type. In this case, we also
want to display it in stacked mode. KDChart W dget with its set Type and
set SubType methods allow usto achieve that in avery simple way.

wi dget . set Type(Wdget::Bar , Wdget:: Stacked);

20

The default type being Normal type for the widget, we need to implicitely pass the
second parameter when calling KDChar t W dget : : set Type() We can also change the
sub type of our bar chart later, e.g. by calling set SubType(W dget: : Percent).

[/ Configure a pen and draw a |ine
/'lsurroundi ng the bars

QPen pen;

pen.setWdth(2);

pen.setColor(Q::darkGay);

/1 call your diagram and set the new pen
wi dget . bar Di agran() - >set Pen(pen);

In the above code, our intention is to draw a grey line around the bars to make them
look nicer. Thistechnique is called configuring the attributes in a diagram. To do so, we
configure a QPen and then assign it to our diagram. KDChar t W dget : : bar Di agr an()
lets get a pointer to our widget diagram. Asyou can seg, it is very easy to assign a new
pen to our diagram by calling the diagram KDChar t Abst r act Di agr am : set Pen()
method.

/1 Set up your ThreeDAttributes

//display in ThreeD node

ThreeDBar Attributes td;

td.setDepth(15);

td. setEnabl ed(true);

wi dget . bar Di agran() - >set ThreeDBar Attri butes(td);

We want our bar chart to be displayed in 3D mode and need to configure some
ThreeDBarAttributes and assign them to our diagram. Here we are configuring the
depth of the 3D bars and enable 3D mode. Depth is an attribute only available to bar
charts, and its setter and getter methods are implemented in the
KDChar t Thr eeDBar At t ri but es, whereas the
KDChar t Abstract ThreeDAttri but es: : set Enabl ed() is a generic attribute
available to al chart types. Both of those attributes are made available at different levels
in order to provide a better attribute structure.

wi dget . show() ;

return app. exec();

See the screenshot below to view the resulting chart displayed by the code shown above.

Figure4.4. A Simple Bar ChartWidget

21

D i =10

.00

This example can be compiled and run from the following location of your KD Chart
installation exanpl es/ W dget / Par anet er s

Note

Configuring the attributes for a KDChar t Bar Di agr am making use of a
KDChar t Chart is done in the same way as for a KDChar t W dget . You
just need to assign the configured attributes to your bar diagram and assign
it to the chart by calling KDChar t Chart: : repl aceDi agrany() .

Bars Attributes

By "Bars attributes’ we are talking about all parameters that can be configured and set
by the user and which are specifics to the Bar Chart type. The "getters" and "setters' for
those attributes can be consulted by looking at KDChar t Bar At tri but es. h to get an
idea about what can be configured there.

Note

KD Chart 2.0 APl separates the attributes specifics to a chart type itself
and the generic attributes which are common to all chart types as for
exampl e the setters and getters for a brush or a pen and that are accessible
from the KDChar t Abst r act Di agr aminterface.

All those attributes have a reasonnable default value that can simply be modified by the
user by caling one of the diagram set function implemented on this purpose
KDChar t Bar Di agram : set Bar Att ri but es() or for example (to change the default
Pen) directly by calling the KDChar t Abst r act Di agr am : set Pen() method.

22

The procedure is straight forward on both cases. Let us discuss the types specifics
attributes first:

e Create a KDChart::Bar Attri butes object by caling
KDChar t Bar Di agram : bar Attri but es.

» Configure this abject using the setters available.

e Assign it to your Diagram with the help of one of the setters available in

KDChart : : Bar Di agr am All the attributes can be configured to be applied for the
whole diagram, for acolumn, or at a specified index (Qvbdel | ndex).

KD Chart 2.0 supports the following attributes for the Bar chart type. Each of those
attributes can be set and retrieved the way we describeit in our example below:

» BarWidth: Specifies the width of the bars

» GroupGapFactor: Configure the gap between groups of bars.

» BarGapFactor: Configure the gap between Bars within agroup

» DrawSolidExcessArrow: Specify whether the arrows showing excess values should
be drawn solidly or split.

Bar Attributes Sample

Let us make this more concrete by looking at the following sample code that describes
the above process. We recommand you to compile and run the following example which
is located in the exanpl es/Bars/Paraneters directory of your KD Chart
installation.

First of all we areincluding the header files we need and bring KD Chart namespace.

#i ncl ude <Q Qui >

#i ncl ude <KDChart Chart >

#i ncl ude <KDChart Bar Di agr an»

#i ncl ude <KDChart Dat aVal ueAttri but es>

usi ng nanmespace KDChart ;

We have included KDChart Dat aval ueAttri butes to be able to display our data
values. Those attributes are of course used by all types of charts and are not specifical to
the Bar diagrams.

In this example we are using a KDChartChart class as wel as a

23

QSt andar dI t emvbdel in order to store the data which will be assigned to our diagram

class ChartWdget : public QN dget {
Q OBJECT
publi c:
explicit ChartWdget (QW dget* parent=0)
i QW dget (parent)
m nodel . i nsert Rows(0, 2, Qvodel | ndex());
m nodel .insertColums(0, 3, Qvbdellndex());
for (int row = 0; row < 3; ++row) {
for (int colum = 0; colum < 3; ++colum) {
QWbdel | ndex i ndex = m nodel .index(row, columm, QVbdel |l ndex());
m nodel . set Dat a(i ndex, Qvariant(row+l * colum));

}
}

Bar Di agr ant di agram = new KDChart : : Bar Di agr am
di agr am >set Model (&m nodel) ;

After having store our data into the model, we create a diagram, in this case, we want to
display a KDChar t Bar Di agr amand assing the model to our diagram. The procedure is
of course similar for all types of diagrams.

We ae no ready to configure our bar specifics attributes using a
KDChart Bar Attri but es to do so.

Bar Attri butes ba;

//set the bar width and
/linplicitely enable it

ba. set Fi xedBar W dt h(500);

ba. set UseFi xedBar Wdth(true);
[/ configure gab between val ues
//and bl ocks

ba. set G- oupGapFactor(0.50);
ba. set Bar GapFactor (0.125);

//assign to the diagram
di agram >setBarAttributes(ba);

We want to configure our bars width so that they get displayed a bit larger. The Width
of a bar is calculated automatically depending on the gaps between each bar and the
gaps between groups of bars as well as the space available horizontally in the plane. So
those values interact with each other so that your bars does not exceed the plane surface
horizontally. Here we are increasing the value of my bars width and at the same time set
some lower values for the gaps. Which will give us larger bars

Note

After having configured our attributes we need to assign the
Bar Att ri but es object to the diagram. This can be done for the whole
diagram, at a specific index or for a column. See KDChar t Bar Di agr am h
and look at the methods available there to find out those setters and
getters.

24

We will now display the data values related to each bar making use of KD Chart 2.0
APl KDChart Dat aVal ueAttri but es. Those attributes are not specifics to the Bar
Chart types but can be used by any type of charts. The procedureis very similar.

/1 display the val ues

Dat aVal ueAttri butes dva;

Text Attributes ta = dva.textAttributes();
/lrotate if you w sh

//ta.setRotation(0);

ta.setFont(QFont("Comic", 9));

ta .setPen(QPen(Color(Q::darkGeen)));
ta.setVisible(true);

dva. set Text Attributes(ta);
dva.setVisible(true);

di agram >set Dat aVal ueAttri butes(dva);

We could have displayed the data values without caring about settings its
KDChar t Text At t ri but es, but we wanted to do so in order to demonstrate this feature
too. Notice that you have to implicitely enable your attributes (DataValue and Text) by
caling their set Vi si bl e() methods. After it is configured as we want it is just to
assign to the diagram as for all other attributes.

Finally 1 want to paint a ligne around one of the datasets bars. In order to keep the
attention of the public on this specific set of data. To do so | need to change the default
pen used by my bars for this data set exclusively. Of course we could also have changed
the pen for all datasets or for a specifical index or value.

//draw a surrounding |ine around bars
QPen |inePen;

I'inePen.setColor(Q::magenta);
linePen.setWdth(4);
linePen.setStyle(Q::DotLine);
//draw only around a dat aset

//to draw around all the bars

// call setPen(nyPen);

di agram >setPen(1, |inePen);

Note

The Pen and the Brush setters and getters are implemented at a lower level
in our KDChart Abst ract Di agram class for a cleaner code structure.
Those methods are of course used by all types of diagram and their
configuration is very simple and straight forward as you can see in the
above sample code. Create a Pen, configure it, call one of the setters
methods available (See KDChart Abstract Di agram h about those
methods).

Our attribute having been configured and assigned we just need to assign the Bar
diagram to our chart and conclude the implementation.

25

m chart. coordi nat ePl ane() - >r epl aceD agr an(di agram ;

QvBoxLayout* | = new QvBoxLayout (this);
| - >addW dget (&m chart);
set Layout (1) ;

}

private:
Chart mchart;
QSt andar dl t emvbdel m nodel ;

int main(int argc, char** argv) {
QApplication app(argc, argv);

Chart Wdget w;
w. show() ;

return app. exec();

}

#i ncl ude "main. noc"

The above procedure can be applied to any of the supported attributes relative to the
chart types. The resulting display of the code we have gone through can be seen in the
following screen-shot. We also recommend you to compile and run the example related
to this section and located in the exanpl es/ Bar s/ Par aret er s directory of your KD
Chart installation.

Figure4.5. Bar with Configured Attributes

The subtype of a bar chart (Normal, Stacked or Percent) is not set via its attribute class,
but directly by using the diagram KDChar t Bar Di agr am : set Type method.

Note

26

ThreeDAttibutes for the different chart types are implemented has an own
class, the same way as for the other attributes. We will talk more in details
about KD Chart 2.0 ThreeD features in the ThreeD section, Chapter 5 -
Customizing your Chart.

Tips and Tricks

In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

A complete Bar Example

In the following implementation we want to be able to:

» Digplay the data values.

» Change the bar chart subtype (Normal, percent, Stacked).

» Select acolumn and mark it by changing the generic pen attributes.

» Display in ThreeD mode and change the Bars depth dynamically.

* Change the Bars width dynamically.

To do so we will need to use several types of attributes. Generics one available to all
chart types (eg KDChar t Abst ract Di agr am : set Pen(),
KDCHar t Dat aVal ueAt tri but es and KDChart Text Attri but es as well as typica
bar attributes only applyable to the Bar types as
KDChartBar Attri butes::set Wdt h() or KDChart ThreeDBar Attri but es

We are making use of a KDChart Chart class and aso of an home made Tabl eMbdel
for the convenience and derived from QAbst r act Tabl eMbdel .

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This allows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model datafiles.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the exanpl es/ t ool s directory of your KD Chart installation.

27

Let us concentrate on our Bar chart implementation for now and consult the following
files: other needed files like the ui, pro , grc ,CSV and main.cpp files can be consulted
from the exanpl es/ Bar s/ Advanced directory of your installation.

1

/**

** Copyright (C) 2006 Kl arAal vdal ens Datakonsult AB. Al rights reserved.

* %

5 ** This file is part of the KD Chart library.
** This file may be distributed and/or nodified under the terms of the
** GNU CGeneral Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE. GPL included in the

10 ** packaging of this file.
* %
** |jcensees holding valid conmercial KD Chart |icenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 * %
** This file is provided AS | S with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
** WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.
* %
** See http://ww. kdab. net/kdchart for

20 ** informati on about KDChart Commercial License Agreenents.
** Contact info@dab.net if any conditions of this
** |icensing are not clear to you.

* %
25 **/

#i f ndef MAI NW NDOW H
#defi ne MAI NW NDOW H

30 #i ncl ude "ui _mai nwi ndow. h"
#i ncl ude <Tabl eMbdel . h>

namespace KDChart {
class Chart;
35 cl ass Bar Di agram
}

cl ass Mai nW ndow : public QN dget, private U ::MinW ndow
{
40 Q OBJECT

publi c:
Mai nW ndowm QW dget* parent = 0);

45 private slots:

voi d on_bar TypeCB_current | ndexChanged(const QString & text);
voi d on_pai nt Val uesCB_t oggl ed(bool checked);
voi d on_pai nt Thr eeDBar sCB_t oggl ed(bool checked);
50 voi d on_mar kCol uimCB_t oggl ed(bool checked);
voi d on_mar kCol ummSB_val ueChanged(int i);
voi d on_t hr eeDDept hCB_t oggl ed(bool checked);
voi d on_dept hSB_val ueChanged(int i);
voi d on_wi dt hCB_t oggl ed(bool checked);
55 voi d on_wi dt hSB_val ueChanged(int i);

private:
KDChart:: Chart* mchart;
KDChart : : Bar Di agr ant m bars;
60) Tabl eModel m nodel ;

#endi f /* MAI NW NDOW H */

28

65

In the above code we bring up the KDChart namespace as usual and declare our slots.
The prupose is to let the user configure its bar chart attributes manually . Asyou can see
we are using a KDChartChart object (m_chart), a KDChartBarDiagram object (
m_bars), and our home made TableModel (m_model).

Theimplementation is also straight forward as we will see below:

/**

** Copyright (C) 2006 Kl arAal vdal ens Datakonsult AB. All rights reserved.

* %

5 ** This file is part of the KD Chart library.
** This file may be distributed and/or nodified under the terns of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE. GPL included in the

10 ** packaging of this file.
** |jcensees holding valid conmercial KD Chart |icenses may use this file in
** accordance with the KD Chart Commercial License Agreenment provided with
** the Software.

15 * %
** This file is provided AS IS with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
** WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.
* %
** See http://ww. kdab. net/kdchart for

20 ** i nformati on about KDChart Commercial License Agreenents.
** Contact info@dab.net if any conditions of this

** |jcensing are not clear to you.
* %

25 **/

#i ncl ude "mai nwi ndow. h"

#i ncl ude <KDChart Chart >
30 #i ncl ude <KDChart Dat aset ProxyModel >
#i ncl ude <KDChart Abstract Coor di nat ePl ane>
#i ncl ude <KDChart Bar Di agr an»>
#i ncl ude <KDChart Text Attri butes>
#i ncl ude <KDChart Dat aVal ueAttri butes>
35 #include <KDChart ThreeDBarAttri but es>

#i ncl ude <QDebug>
#i ncl ude <QPai nter>
40
usi ng namespace KDChart ;
Mai nNW ndow: : Mai nW ndow(QW dget * parent)
QW dget (parent)
45 {
setupU (this);
QHBoxLayout * chart Layout = new QHBoxLayout(chartFranme);

m chart = new Chart();
50 chart Layout - >addW dget (m chart);

m _nodel . | oadFronCSV(":/data");

/1 Set up the diagram
55 m bars = new Bar Di agran() ;

29

60

65

70

75

80

85

90

95

100

105

110

115

120

125

m bar s- >set Mbdel (&m nodel);

QPen pen(mbars->pen());
pen.setColor(Q::darkGay);

pen.setWdth(1);

m bar s- >set Pen(pen);

m chart - >coor di nat ePl ane() - >r epl aceDi agran(m bars);
) m chart - >set d obal Leadi ngTop(20);

voi d Mai nW ndow: : on_bar TypeCB_current | ndexChanged(const QString & text)

if (text == "Normal")

m bar s- >setType(Bar Di agram : Nor mal);
else if (text == "Stacked")

m bar s- >set Type(Bar Di agram : Stacked);
else if (text == "Percent")
| m bar s- >set Type(Bar Di agram : Percent);
el se

gwarning (" Does not match any type");

m chart - >updat e() ;

voi d Mai nW ndow: : on_pai nt Val uesCB_t oggl ed(bool checked)

Q UNUSED(checked);
Il W set the DataVal ueAttributes on a per-columm basis here,
/] because we want the texts to be printed in different
/'l colours - according to their respective dataset's col our.
const QFont font(Q:ont("Comic", 10));
const int col Count = m bars- >nodel 0)- >col umCount () ;
for (int iColum = 0; ~i Col utm<col Count ; ++i Col um) {
@Brush brush(m bars->brush(i Col um));
Dat aVal ueAttri butes a(m bars->dataVal ueAttributes(iColum));
TextAttributes ta(a.textAttributes());
ta.setRotation(0);
ta.setFont(font);
ta .setPen(QPen(brush.color()));
if (checked)
ta.setVisible(true);
el se
ta.setVisible(false);

a.set TextAttributes(ta);
a.setVisible(true);
m bar s- >set Dat aVal ueAttri butes(i Colum, a);

}

m chart - >updat e();

voi d Mai nW ndow: : on_pai nt Thr eeDBar sCB_t oggl ed(bool checked)

ThreeDBar Attri butes td(mbars->threeDBarAttributes());
doubl e defaul tDepth = td. depth();
if (checked) {

td. set Enabl ed(true);

if (threeDDept hCB->I sChecked())

| td. set Dept h(dept hSB->val ue());
el se
td. set Dept h(defaul tDepth);

} else {

td. set Enabl ed(fal se);

}
m bar s- >set ThreeDBar Attri butes(td);

30

m chart - >updat e() ;

}/oi d Mai nW ndow: : on_mar kCol uimCB_t oggl ed(bool checked)
130
const int colum = markCol umsSB- >val ue();
QPen pen(mbars->pen(colum));
if (checked) {
pen.setColor(Q::yellow);
135 pen. set Styl e(Q : DashLine);
pen.setWdth(3);
m bar s- >set Pen(colum, pen);

} else {
pen.setColor(Q::darkGay);
140 pen.setStyle(Q::SolidLine);

pen.setWdth(1);
m bar s- >set Pen(col um, pen);

}
m chart - >updat e() ;
145 }

voi d Mai nW ndow: : on_dept hSB_val ueChanged(int i)
Q UNUSED(i);

if (threeDDept hCB->i sChecked() && pai nt ThreeDBar sCB- >i sChecked())
on_pai nt Thr eeDBar sCB_t oggl ed(true);

150

}
155 voi d Mai nW ndow: : on_t hr eeDDept hCB_t oggl ed(bool checked)

Q_UNUSED(checked);

if (paintThreeDBarsCB->i sChecked()
160 on_pai nt ThreeDBar sCB_t oggl ed(true);

}
voi d Mai nW ndow: : on_mar kCol utmSB_val ueChanged(int i)

{
165 QPen pen(mbars->pen(i));
mar kCol urmCB- >set Checked(pen. col or () == cryellow);
}

voi d Mai nW ndow: : on_wi dt hSB_val ueChanged(int value)

170 {
if (wdthCB->i sChecked()) {
Bar Attributes ba(mbars->barAttributes());
ba. set Fi xedBar Wdt h(val ue);
ba. set UseFi xedBar Wdth(true);
175 m bars->setBarAttri butes(ba);

m chart->update();

180 voi d Mai nW ndow: : on_wi dt hCB_t oggl ed(bool checked)

if (checked){
el o?_wi dt hSB_val ueChanged(w dt hSB->val ue());
el se
185 Bar Attributes ba(mbars->barAttributes());
ba. set UseFi xedBar Wdt h(fal se);
m bar s->setBarAttributes(ba);
m chart - >updat e() ;

190 }

31

First of all we are adding our chart to the layout as for any other Qt widget. Load the
data to be display into our model, and assign the model to our bar diagram. We also
want to configure a Pen and surround the displayed bars by a darkGray line to make it
somewhat nicer. Finally we assign the diagram to our chart.

//draw a surrounding |ine around bars

@HBoxLayout * chart Layout = new QHBoxLayout(chartFrame);
m chart = new Chart();

chart Layout - >addeget(m chart);

m _nodel . | oadFronCSV(":/data");

/1 Set up the diagram
m bars = new Bar Di agran() ;
m bar s- >set Mbdel (&m nodel);

QPen pen;

pen.setColor(Q::darkGay);
pen.setWdth(1);

m bar s- >set Pen(pen);

m chart - >coor di nat ePl ane() - >r epl aceDi agram(m bars);

The user should be able to change the default sub-type via a combo box from the GUI.
This can be done by using KDChar t Bar Di agr am : set Type() asshown below and by
updating the view.

|f(text == "Normal ")
m bar s- >set Type(Bar Di agram : Normal);
else if (text == "Stacked")

m bar s- >set Type(Bar D agram : St acked);

'm'_i:'hart ->updat e();

We set the DataValueAttributes on a per-column basis here, because we want the texts
to be printed in different colours - according to their respective dataset's colour. The
user will be able to display or hide the values.

const QFont font(QFont("Comc", 10));
const int col Count = m bars->nodel ()->col umCount ();
for (int iColum = 0; iColum<col Count; ++i Colum) {
@Brush brush(m bar s- >prush(i Col urm))
Dat aVal ueAttri butes a(m bars->dataVal ueAttributes(i Colum));
TextAttributes ta(a.textAttributes());
ta.setRotation(0);
ta.setFont(font);
ta .setPen(QPen(brush.color()));
if (checked)
ta.setVisible(true);
el se
ta.setVisible(false);

a.set TextAttributes(ta);

a.setVisible(true
m _bar s- >set Dat aVal ueAttri but es(i Colum, a);

32

m chart - >updat e() ;

As you can see in the above code we are changing the default values for
Dat aVal uesAt tri but es Text Att ri but es. Also we alow the usert to display or not
the texts dynamically. see KDChar t Text At t ri but es: : set Vi si bl e() .

In order to be able to display our diagram in threeD mode we need to bring
KDChar t Thr eeDBar At t ri but es, and configure it. Here we are enabling or disabling
and change its Depth parameter according to the user interaction.

ThreeDBar Attributes td(mbars->threeDBarAttributes());
doubl e defaul tDepth = td.depth();
if (checked) {
td. set Enabl ed(true);
if (threeDDept hCB->I sChecked())
td. set Dept h(dept hSB->val ue());
el se
td. set Dept h(defaul tDepth);
} else
td. set Enabl ed(false);

}
m bar s- >set ThreeDBar Attri butes(td);
m chart - >updat e() ;

ThreeDBarAttributes are as simple to use as all other Attributes types. Our next lines of
code will make use of the generic KDChar t Abst r act Di agram : set Pen() available
to all diagram types, to allow the user to mark a column or reset it to the original Pen
interactively.

const int colum = mar kCol uMmSB- >val ue();
QPen pen(mbars->pen(colum));
if (checked) {
pen.setColor(Q::yellow);
pen.set Style(Q::DashLine);
pen.setWdth(3);
m bar s- >set Pen(col um, pen);
} else{
pen.setColor(Q::darkGay);
pen.setStyle(Q::SolidLine);
pen.setWdth(1);
m bar s- >set Pen(colum, pen);

m chart - >updat e() ;

Note

It is important to know that have three levels of precedence when setting
the attributes:

33

e Global: Weak
» Per column: Medium
e Percell: Strong

Which means that once you have set the attributes for a column or a cell,
you will not be able to change those settings by calling the "global”
method to reset it to another value, but instead call the per column or per
index setter. As demonstrated in the above code.

Finally we configure atypical KDChar t Bar At t ri but es, the Bar Width, for the user to
be able to change the width of the bars dynamically increasing or decreasing its value
viathe Gui.

if (wdthCB->i sChecked()) {
Bar Attributes ba(mbars->barAttributes());
ba. set Fi xedBar Wdt h(val ue);
ba. set UseFi xedBar Wdth(true);
m bar s->setBarAttributes(ba);

m chart - >updat e();

Here we are making use of the
KDChart Bar At t ri but es: : set UseFi xedBar W dt h() method to enable or disable
the effect. The Bar Width value being passed by the value of a Spin Box.

See how this widget having some attributes enabled is displayed in the following
screen-shot.

Figure4.6. A Full featured Bar Chart

(OC “Eercht) el

[%| Display Data Values

Bar Chart Type:
E

Pen Settings

3 Mark Column s
Paint ThreeD Bars

% ThreeD

["] Bars Depth E
Configure Width

[JBarsWidth (8 [3]

This example is available to compile and run from the exanpl es/ Bar s/ Advanced

34

directory in your KD Chart installation. We recommend you to run it.

Line Charts
Tip

Line charts usually show numerical values and their development in time.
Like the Bar Charts they can be used to compare multiple series of data.

An example might be the development of stock values over a longer
period of time or the water level rise on several gauges.

As for Bar types, KD Chart can generate line charts of different kind of line charts.
KDChar t Li neDi agr amsupports the following subtypes explained below:

* Normal Line Chart
» Stacked Line Chart

e Percent Line chart

Normal Line Charts
Tip
Normal line charts are the most common type of line charts and are used
when the datasets are compared to each other individually. For example, if

you want to visualize the development of sales figures over time for each
department separately, you might have one line per department.

Figure4.7. A Normal Line Chart

35

/\

KD Chart draws normal line charts by default when in line chart mode so no method
needs to be called to get one, however after having used your KDChar t Li neDi agr am
to display another line chart subtype you can reset it by calling set Type(Normal).

Stacked Line Charts
Tip
Stacked line charts alow you to compare the development of a series of
values summarized over all datasets. You could use this if you are only

interested in the development of total sales figures in your company, but
have the data split up by department.

Figure4.8. A Stacked Line Chart

36

Stacked mode for line charts is activated by calling the KDChar t Li neDi agr ammethod
set Type(Stacked).

Percent Line Charts
Tip

Percent line charts show how much each value contributes to the total sum,
similar to percent bar charts.

Figure4.9. A Percent Line Chart

0.7

37

Percent: Percentage mode for line charts is activated by calling the
KDChart Li neDi agr amfunction set Type(Percent).

Note

Three-dimensional look of the lines is no specia feature you can enable it
for al types (Normal, Stacked or Percent) by setting its ThreeD
attributes class (see KDChart Thr eeDLi neAttri but es. h to consult its
interface). We will describe it more in details in the "Line Attributes"
section further on.

Code Sample

For now let us make the above description more concrete by looking at the following
code sample based on the Si npl e W dget example we have been demonstrating above
(Chapter 3 - Two Ways - Wdget Exanpl e). In this example we demonstrate
how to configure your line diagram and change its attributes when working with a
KDChar t W dget .

First include the appropriate headers and bring in the "K DChart namespace:

#i ncl ude <QAppli cati on>

#i ncl ude <KDChart W dget >

#i ncl ude <KDChart Li neDi agr an»
#i ncl ude <QPen>

usi ng nanespace KDChart;

We need to include KDChar t Li neDi agr amin order to be able to configure some of its
attributes as we will see further on.

int main(int argc, char** argv) {
QApplication app(argc, argv);
W dget wi dget;
/1 our Wdget can be configured
/1l as any Q@ W dget
wi dget . resi ze(600, 600)

/] store the data and assign it

Qvect or < doubl e > vec0O, vecl;
vecO << 5 << 1 << 3 << 4 << 1;
vecl << 3 << 6 << 2 << 4 << §;
vec2 << 0 << 7 << 1 << 2 << 1;
wi dget . set Dat aset (0, vecO, "vecO");
wi dget . set Dataset (1, vecl, "vecl");
wi dget . set Dat aset (2, vec2, "vec2");
wi dget . set SubType(W dget:: Percent);

We dont need to change the default chart type as Line Charts is the default . In this case
we also want to display it in percent mode. KDChart W dget with its set SubType

38

method allow usto achieve that the easy way.

wi dget . set SubType(Wdget:: Percent);

The default sub-type being Normal for al types of charts we need to call implicitely
KDChar t W dget : : set SubType() in this case. We can aso change the sub-type of
our line chart further on by calling for example set SubType(W dget: : St acked)
or reset its default value by calling set SubType(W dget: : Normal).

/] Configure a pen and draw

//a dashed line for colum 1

QPen pen;

pen.setWdth(3);

pen.set Styl e(Q::DashDotLine);
pen.setColor(Q::green);

/1 call your diagramand set the new pen
wi dget. | ineDi agran()->setPen(1, pen);

In the above code our intention is to draw a new style of line for this specific dataset in
order to keep the attention of the public on it. That is what we call configuring an
attribute. In this case the pen attribute. To do so we configure a QPen and then assign it
to our diagram. KDChart W dget : : | i neDi agr an() alow us to get a pointer to our
widget diagram. As you can see it is very simple to assign a new pen to our diagram by
calling the diagram KDChar t Abst r act Di agr am : set Pen() method.

Display in Area node

neAttributes |d;

set D spl ayArea(true);

configure transparency

it is nicer and let us

all the area

set Transparency(25);

wi dget . |i neDi agram()->setLineAttributes(1d);

s—~~>~—r=

/
i
d.
/
/
/
d

The code above makes use of typical KDChar t Li neAttri but es and let us diplay the
areas as well as set up the color transparency which is very helpfull when displaying a
normal chart type where the areas can hide each other. Finally we conclude our small
example:

wi dget. show() ;

return app. exec();

See the screen-shot below to view The resulting chart displayed by the above code.
Figure4.10. A Simple Line ChartWidget

39

This example can be compiled and run from the following location of your KD Chart
installation exanpl es/ Li nes/ Si npl eLi neW dget

Note

Configuring the attributes for a KDChar t Li neDi agr am making use of a
KDChar t Chart is done the same way as for a KDChar t W dget . You just
need to assign the configured attributes to your line diagram and assign the
diagram to the chart by calling KDChar t Chart : : repl aceDi agr an() .

Lines Attributes

There are only a few attributes specific to a line chart as it is using a Pen to draw the
lines. Pen and Brush are generic attributes common to all types of diagrams and are
handled by KDChart Abstract Di agram from which KDChart Li neDi agram is
derived indirectly.

However to make it simple for the user we have added some convenient functions to the
KDChar t Li neAt t ri but es in order to be able to display Areas and set transparency for
all subtypes of a line chart. We will go through those methods further on in our Area
charts section in this Chapter.

KDChar t Li neDi agr amcombined with its attributes and methods or combined together
with KDChar t Mar ker At t ri but es let us display the line chart subtypes as described
above as well as Area Charts and Point charts the easy way. We will of course present
al those alternatives with some sample code and ready to use examples in the next
sections.

40

The use of LineAttributesis as simple as for the other chart types:

* Create a KDChart::Li neAttributes object by caling
KDChar t Li neDi agram : | i neAttri butes.

» Configure this object using the setters available.

e Assign it to your Diagram with the help of one of the setters available in
KDChart : : Li neDi agr am All the attributes can be configured to be applied for the
whole diagram, for acolumn, or at a specified index (Qvbdel | ndex).

KD Chart 2.0 supports the following attributes for the Line chart type. Each of those
attributes can be set and retrieved the way we describe it in our example below:

e MissingValuesPolicy: Specifies how missing values will be shown in a line
diagram.

» Display area: paint the areafor a dataset.

» Areatransparency: set the transparency for the displayed area color.

Note

All other attributes as ThreeDLineAttributes (specific to line charts), or
MarkerAttributes, DataV alueAttributes and TextAttributes ..etc.. available
to al types of charts are of course also available to the line charts types
and sub-types.

Line Attributes Sample

Let us make this more concrete by looking at the following sample code that describes
the above process. We recommand you to compile and run the following example which
is located in the exanpl es/Lines/Paraneters directory of your KD Chart
installation.

First of all we areincluding the header files and bring KD Chart hamespace.

#i ncl ude <Qx Qui >

#i ncl ude <KDChart Chart >

#i ncl ude <KDChart Li neDi agr an»

#i ncl ude <KDChart Dat aVal ueAttri butes>

usi ng nanmespace KDChart;

41

We have included KDChart Dat aval ueAttri butes to be able to display our data
values. Those attributes are of course used by all types of charts and are not specifical to
the Line diagram.

In this example we are using a KDChartChart class as wel as a
QSt andar dI t emvbdel in order to store the data which will be assigned to our
diagram.

class ChartWdget : public QN dget {

Q OBJECT

publi c:
explicit ChartWdget (QN dget* parent=0)
. QW dget (parent)
{

m nodel . i nsert Rows(0,5, Qwbdel | ndex());
m_nodel . i nsert Col ums(0,5, Qwbdel | ndex());

for(int i =0; i <5; ++i) {
for(int j =0; j <5; +4 {
m nodel . set Dat a(m nodel . i ndex(i,j, Qwdel I ndex()), (double)i*j);
}

Li neDi agrant di agram = new Li neDi agr am
di agr am >set Model (&m nodel) ;

After having stored our data into the model, we create a diagram. In this case, we want
to display a KDChar t Li neDi agram As aways we heed to assign the model to our
diagram. This procedureis of course similar for al types of diagrams.

We are now ready to configure our attributes. We want to display the data values and
configure the text and font for those.

/1 Display val ues

// 1 - Call the relevant attributes

Dat aVal ueAttri butes dva(diagram >dataVal ueAttributes());
2

11 - W want to configure the font and col ors
/1 for the data val ues text.

Text Attributes ta(dva.textAttributes());
/lrotate if you wish

//ta.setRotation(0);

/1 3 - Set up your text attributes

ta.setFont(QFont("Conmic", 6));

ta .setPen(QPen(QColor(Q::darkGeen)));
ta.setVisible(true);

/Il 4 - Assign the text attributes to your

/1 Dat aVal uesAttri butes

dva. set Text Attributes(ta);

dva.setVisible(true);

/Il 5 - Assign to the diagram

di agram >set Dat aVal ueAttri butes(dva);

As for al attributes we call them by using the relevant method available from our
diagram interface, here di agr am >dat aVal ueAttri but es(). The second step is to
set it up with our own values and finally we assign it to our diagram.

42

We could have displayed the data values without caring about settings its
KDChar t Text At t ri but es, but we wanted to do so in order to demonstrate this feature
too. Notice that you have to implicitely enable your attributes (DataValue and Text) by
calling their set Vi si bl e() methods before we assign it to the diagram.

Note

After having configured our attributes we need to assign the attributes to
the diagram. This can be done for the whole diagram, at a specific index or
for a column. Look at the attributes interface and look at the methods
available there to find out those setters and getters.

We want to configure the Pen in order to draw a section of aline (dataset) differently.
e.g. We want to focus the attention of the reader on this particular section.

=g

11 aw a the section of a line differently.

I - Retrieve the pen for the dataset and change
/1 its style.

I This allow us to keep the line original color.
Qen |inePen(diagram>pen(1));

i nePen. setWdth(3);

|

| :

/1l 2 - Change the Pen for a section within a line

while assigning it to the diagram

di agram >set Pen(m nodel .index(1, 1, Qvbdel Index()), linePen);

Of course we could also have changed the pen for a single or all datasets as well. See
how we call the pen for this very dataset before changing its style and width. This is
doneto keep its original color for consistancy. Alos

Note

The Pen and the Brush setters and getters are implemented at a lower level
in our KDChart Abst ract Di agr am class for a cleaner code structure.
Those methods are of course used by all types of diagram and their
configuration is very simple and straight forward as you can see in the
above sample code. Create or get a Pen , configure it, call one of the
setters methods available (See KDChart Abstract Di agram h about
those methods).

Our attribute having been configured and assigned we just need to assign our line
diagram to our chart and conclude the implementation.

m chart. coordi nat ePl ane() - >r epl aceDi agr an(di agran);
QvBoxLayout* | = new QvBoxLayout (this);

| - >addW dget (&m chart);
set Layout (1) ;

43

private:
Chart mchart;
@St andar dI t emivbdel m nodel ;

0
int main(int argc, char** argv) {
QApplication app(argc, argv);

Chart W dget w,
w. show() ;

return app. exec();

}

#i ncl ude "main. noc"

The above procedure can be applied to any of the supported attributes for all chart types.
The resulting display of the code we have gone through can be seen in the following
screen-shot. We aso recommend you to compile and run the example related to this
section and located in the exanpl es/ Li nes/ Par anet er s directory of your KD Chart
installation.

Figure4.11. Line With Configured Attributes

=7 o
e) CET

The subtype of aline chart (Normal, Stacked or Percent) is not set viaits attribute class,
but directly by using the diagram KDChar t Li neDi agr am : set Type method.

Note

ThreeDAttibutes for the different chart types are implemented has an own
class, the same way as for the other attributes. We will talk more in details
about KD Chart 2.0 ThreeD features in the ThreeD section, Chapter 5 -
Customizing your Chart.

Tips and Tricks

In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

A complete Line Example

In the following implementation we want to be able to:

e Display the datavalues.
» Change the line chart subtype (Normal, percent, Stacked).
» Display Areasfor one or several for one or several dataset(s).

* Runasmall animation highlighting the areas one after the other.

To do so we will need to use several types of attributes and methods, as
KDChar t Abst ract Di agr am : set Pen(), KDCHart DataVal ueAttributes and
KDChart Text Attri but es.

We are making use of a KDChar t Chart class and also of an home made Tabl eModel
for the convenience and derived from QAbst r act Tabl eMbdel .

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This alows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model data files.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the exanpl es/ t ool s directory of your KD Chart installation.

Let us concentrate on our Line chart implementation for now and consult the following
files: other needed files like the ui, pro , grc ,CSV and main.cpp files can be consulted
from the exanpl es/ Li nes/ Advanced directory of your installation.

1

/**

** Copyright (C) 2006 Kl arAsl vdal ens Datakonsult AB. Al rights reserved.

* %

5 ** This file is part of the KD Chart |ibrary.

* %

** This file may be distributed and/or nodified under the terms of the

** GNU General Public License version 2 as published by the Free Software

** Foundation and appearing in the file LICENSE GPL included in the

45

10

15

20

25

30

35

40

45

50

55

60

65

70

* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

packagi ng of this file.

Li censees hol ding valid commercial KD Chart |icenses may use this file in
accordance with the KD Chart Conmmercial License Agreenent provided with
the Sof tware.

This file is provided AS IS with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.

See http://ww. kdab. net/ kdchart for
i nformati on about KDChart Commercial License Agreenents.

Contact info@dab.net if any conditions of this
licensing are not clear to you.

**/

#i f ndef MAI NW NDOW H
#def i ne MAI NW NDOW H

#i ncl ude "ui _mai nwi ndow. h"
#i ncl ude <Tabl eMbdel . h>

namespace KDChart {

class Chart;
cl ass Li neDi agram

cl ass Mai nW ndow : public QN dget, private U ::MinW ndow

Q OBJECT
publi c:

Mai nW ndowm QW dget* parent = 0);
private slots:

voi d on_| i neTypeCB_current | ndexChanged(const QString & text);
voi d on_pai nt Val uesCB_t oggl ed(bool checked);

voi d on_t hr eeDMbdeCB_t oggl ed(bool checked);

voi d on_dept hSB_val ueChanged(int i);

voi d on_ani mat eAr easCB_t oggl ed(bool checked);

voi d on_hi ghl i ght AreaCB_t oggl ed(bool checked);

voi d on_hi ghl i ght AreaSB_val ueChanged(int i);

voi d setHighlightArea(int row, int colum, iInt opacity, bool checked, bool

void slot_tinmerFired();

private:

KDChart:: Chart* mchart;
KDChart : : Li neDi agrant m | i nes;
Tabl eModel m nodel ;

int m_curRow,

int mcurCol um;

int mcurQOpacity;

#endi f /* MAI NW NDOWH */

In the above code we bring up the KDChart namespace as usual and declare our slots.
The purpose is to let the user configure its line chart attributes manually . As you can
see we are using a KDChartChart object (m_chart), a KDChartLineDiagram object (
m_lines), and our home made TableModel (m_model).

46

doUpd

Theimplementation is also straight forward as we will see below:

1

10

15

20

25

30

35

40

45

50

55

60

65

AR R R AR EEEEREEEEREEEEEEREEE

* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

Copyright (C) 2006 Kl arAal vdal ens Datakonsult AB. Al rights reserved.
This file is part of the KD Chart library.

This file may be distributed and/or nodified under the terms of the
GNU General Public License version 2 as published by the Free Software
Foundati on and appeari ng inthe file LICENSE. GPL included in the
packagi ng of this file

Li censees holding valid commercial KD Chart licenses may use this file in
accordance with the KD Chart Conmercial License Agreenent provided with
the Software.

This file is provided AS | S with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
WARRANTY OF DESI G\, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.

See http://ww. kdab. net/ kdchart for
informati on about KDChart Commercial License Agreenents.

Contact info@dab.net if any conditions of this
licensing are not clear to you.

LR SRR EEREEEEEEEEEEEEEEY]

#i ncl ude "mai nwi ndow. h"

#i ncl ude <KDChart Chart >

#i ncl ude <KDChart Li neDi agr an»

#i ncl ude <KDChart Text Attri but es>

#i ncl ude <KDChart Dat aVal ueAttri but es>
#i ncl ude <KDChart ThreeDLi neAttri but es>

#i ncl ude <QrTi nmer>

usi ng namespace KDChart ;

Mai nW ndow: : Mai nW ndow(QW dget* parent)

{

QN dget (parent)
setupU (this);

m cur Col utm = -1;
m cur Opacity = 0;

@HBoxLayout * chart Layout = new QHBoxLayout(chartFrame);
m chart = new Chart();
chartLayout - >addW dget (m chart);

m_nodel . | oadFronCSV(":/data");

Il Set up the di agram
m | ines = new Li neDi agran();
m | i nes- >set Mbdel (&m nodel);

Cartesi anAxi s *xAxis = new Cartesi anAxi s(mlines);
Cartesi anAxi s *yAxi s = new CarteS| anAxi s (m l'ines)
XAXi s->set Posi tion (KDChart::Cartesi anAxi s:: Bottom)
YyAXi s->set Position (KDChart: :CartesianAxis: : Left);
m | i nes->addAxi s(xAxis);

m | i nes->addAxi s(yAxi s);

m chart - >coor di nat ePl ane() - >r epl aceDi agran(m.|ines);

m chart - >set d obal Leadi ng(20, 20, 20, 20);
/T Instantiate the tiner

47

QTimer *timer = new QTinmer(thi
connect (tinmer, SIGNAL(ti meout (
70 timer->start(30);
}

voi d Mai nW ndow: : on_| i neTypeCB_current | ndexChanged(const QString & text)

)Sg this, SLOT(slot_tinerFired()));

75 if (text == "Nornmal"
m | i nes- >set Type(Li neDi agram : Nornal);
else if (text == "Stacked"
m | i nes- >set Type(Li neDi agram : St acked);
else if (text == "Percent"
80 | m | i nes- >set Type(Li neDi agram : Percent);
el se
gwarning (" Does not match any type");

m chart - >updat e() ;
85 }

voi d Mai nW ndow: : on_pai nt Val uesCB_t oggl ed(bool checked)
{

const int col Count = mlines->nodel ()->col umCount(m.|ines->rootlndex());

90 for (int iColum = 0; iColum<col Count; ++i Colum)

Dat aVal ueAttributes a(mlines->dataVal ueAttributes(i Colum));

@Brush brush(m.lines->brush(i Colum));

TextAttributes ta(a.textAttributes());

ta.setRotation(0);
95 ta.setFont(QFont("Comic", 10));

ta.setPen(QPen(brush.color()));

if (checked)
ta.setVisible(true);
100 el se
ta.setVisible(false);
a.setVisible(true);
a.set TextAttributes(ta);
m_| i nes- >set Dat aVal ueAttri butes(i Colum, a);

105
m chart->update();
}
}/oi d Mai nW ndow: : on_ani mat eAr easCB_t oggl ed(bool checked)
110
i f(checked){
hi ghl i ght AreaCB- >set CheckState(Q::Unchecked);
m _cur Row = 0;
m cur Col um = 0;
115 }el se{
m cur Col utm = -1;
hi ghl i ght AreaCB- >set Enabl ed(! checked);
hi ghl i ght AreaSB- >set Enabl ed(! checked);
120 /1 un-highlight all previously highlighted col ums
const int rowCount = m.|ines->nodel ()->rowCount();
const int col Count = m|ines->nodel ()->col umGCount O);
for (int iColum = 0; ~i Col utm<col Count ; ++i Col urm){
set H ghlight Area(-1, iColum, 127, false, false);
125 for (int i Row = 0; i Row<rowCount; ++i Row)
/1 m | ines->resetlLineAttri butes(celllndex);
set Hi ghl i ght Area(i Row, i Colum, 127, false, false);
m chart - >update()
130 m cur Opacity = 0;
}

voi d Mai nW ndow: : sl ot _tinmerFired()
135 if(mcurColum < 0) return;

m cur Qpacity += 8;
if(mcurQpacity > 255){

48

140

145

150

155

160

165

170

175

180

185

190

195

200

205

set Hi ghl i ght Area(m curRow, m curColum, 127, false, false);
m cur Opacity = 5;
++m_cur Row;,
if(mcurRow >= m.lines->nodel ()->rowCount (m.|ines->rootlndex())){
m _cur Row = 0;
++m cur Col um;
if(mcurColum >= mlines->nopdel ()->col umCount(m.|ines->rootlndex()))
m cur Col utmm = 0;

}

set H ghl i ght Area(m curRow, m curColum, mcurQpacity, true, true);

voi d Mai nW ndow: : set Hi ghli ght Area(int row, int colum, int opacity, bool checked, bo

}

if(row< 0){
/1 highlight a conplete dataset
Li neAttributes la = mlines->lineAttributes(colum);
if (checked) {
| a. set Di spl ayArea(true);
| a. set Transparency(opacity);
} else {
| a.setDisplayArea(false);

m | ines->setLineAttributes(colum, la);

}el se{
/1 highlight two segnents only
if(row){
QWodel I ndex cel |l I ndex(m.lines->nobdel ()->i ndex(row1, colum, m.lines->r
if (checked

Li neAttributes la(mlines->lineAttributes(celllndex));
la.setDisplayArea(true)
| a. set Transparency(255-opacity)
/'l set specific line attribute settings for this cell
m | ines->setlLineAttributes(celllndex, la);
} else {
/1 remove any cell-specific line attribute settings fromthe i ndexed
m | ines->resetlLineAttributes(celllndex);

}

1f(row < mlines->nodel ()->rowCount(m.|ines->rootlndex())){
Qvodel | ndex cel | I ndex(m.|ines->nodel ()->i ndex(row, columm, mlines->roo
if (checked) {
LineAttributes la(mlines->lineAttributes(celllndex));
| a.setDisplayArea(true);
| a. set Transparency(opacity);
/1 set specific line attribute settings for this cell
m | i nes->setLineAttributes(celllndex, la);
} else {
/'l renove any cell-specific line attribute settings fromthe indexed
m |ines->resetlLineAttributes(celllndex);

}

}
i f(doUpdate)
m chart - >updat e() ;

voi d Mai nW ndow: : on_hi ghl i ght AreaCB_t oggl ed(bool checked)

set Hi ghl i ght Area(-1, highlightAreaSB->value(), 127, checked, true);

voi d Mai nW ndow: : on_hi ghl i ght AreaSB_val ueChanged(int i)
{

Q UNUSED(i);
if (highlightAreaCB->i sChecked())
on_hi ghli ght AreaCB_t oggl ed(true);
el se
on_hi ghl i ght AreaCB_t oggl ed(fal se);

49

}
210 voi d Mai nW ndow: : on_t hr eeDvbdeCB_t oggl ed(bool checked)
{

ThreeDLi neAttributes td(mlines->threeDLi neAttributes());
td. set Dept h(dept hSB->val ue());
if (checked)
215 td.setEnabl ed(true);
el se
td. setEnabl ed(false);

m | i nes- >set ThreeDLi neAttributes(td);

220
m chart->update();
}
voi d Mai nW ndow: : on_dept hSB_val ueChanged(int i)
225 {
Q UNUSED(i);
if (threeDVbdeCB- >i sChecked())
on_t hreeDvbdeCB_t oggl ed(true);
}
230

First of all we are adding our chart to the layout as for any other Qt widget. Load the
data to be display into our model, and assign the model to our line diagram. We aso
want to set up a QTi ner to be able to run our animation. Finally we assign the diagram
to our chart.

d—lBoxLayout* chartLayout = new QHBoxLayout(chartFranme);
m chart = new Chart();
chartLayout - >addW dget (m chart);

m _nodel . | oadFronCSV(":/data");

/1 Set up the di agram
m | ines = new Li neDi agran();

m | i nes- >set Mbdel (&m nodel

m chart - >coordi nat ePl ane() - >r epl aceDi agran{ m_|ines);
/] Instantiate the tinmer
QTimer *timer = new QTinmer(thi
connect (tinmer, SIGNAL(ti meout (
timer->start(40);

)Sg this, SLOT(slot_tinerFired()));

The user should be able to change the default sub-type via a combo box from the GUI.
This can be done by using KDChar t Bar Di agr am : set Type() as shown below and by
updating the view.

f (text == "Normal")
i nes->set Type(LineDi agram : Nornmal);
se if (text == "Stacked")
m | i nes- >set Type(Li neDi agram : St acked);
se if (text == "Percent")

|'i nes->set Type(Li neDi agram : Percent);

;n'_;:hart ->updat e() ;

50

We want the user to be able to display or hide the data values from the GUI, and also
change the default font for our data values labels to make it nicer.

const int col Count = m|ines->nodel ()->col umCount(m.|ines->rootlndex());
for (int iColum = 0; iColumm<col Count; ++i Columm) {

Dat aVal ueAttributes a(mlines->dataVal ueAttributes(i Colum));

@Brush brush(m.lines->brush(i Colum));

TextAttributes ta(a.textAttributes());

ta.setRotation(0);

ta.setFont(QFont("Comc", 10));

ta.setPen(QPen(brush.color()));

if (checked)

ta.setVisible(true);

el se

ta.setVisible(false);

a.setVisible(true);

a.set TextAttributes(ta);

m | i nes- >set Dat aVal ueAttrlbutes(i Colum, a);

m chart - >updat e() ;

In the code above, we make sure our data values labels will be painted using the dataset
default color by retrieving the brush for each dataset and assigning the color of the brush
to the pen.

Note

It is important to know that have three levels of precedence when setting
the attributes: Which means that once you have set the attributes for a

* Global: Weak
e Per column: Medium
* Percdl: Strong

the attributes: Which means that once you have set the attributes for a
column or a cell, you will not be able to change those settings by calling
the "global" method to reset it to another value, but instead call the per
column or per index setter. As demonstrated in the above code.

The user should be able to display the areafor one or several dataset.

LineAttributes la = mlines->lineAttributes(
m_ | i nes- >nodel ()->i ndex(0, colum, mlines->rootlndex()));
if (checked) {
| a. setDisplayArea(true);
| a. set Transparency(opacity);
} else {

51

| a.setDi spl ayArea(false);
m | i nes->setLineAttributes(colum, la);

'm'_i:hart ->update();

Thisisimplemented by configuring our line attributes and assign them by dataset to the
diagram, as shown above.

The same procedure is used for us to be able to run our animation. You can of course
learn more about this part of the code which is more related to Qt programming by
consulting exanpl es/ Li nes/ Advanced/ mai nwi ndow. cpp.

This example is available to compile and run from the exanpl es/ Li nes/ Advanced
directory in your KD Chart installation. We recommend you to run it. The widget
displayed by the above code is shown in the figure below.

Figure4.12. A Full featured Line Chart

))

X Display Data Values

Line Chart Type:

Show Areas
¢ Highlight Area [2 [Z]
Animate

[] Highlight

Note

The following sections about Point charts and Area are tightly related to
line charts. Point charts are line diagrams with Markers (lines themselves
are not painted). Area charts are also line charts with the area below the
lines, filled by the respective dataset's color.

Point Charts
Tip
Point charts often are used to visuaize a big number of data in one or

52

several datasets. A well known point chart example is the historical first
Herzsprung-Russel diagram from 1914 where circles represented stars
with directly measured parallaxes and crosses were used for guessed
values of stars from star clusters similar to the following simple chart.

Figure4.13. A Point Chart

Note

Unlike the other chart typesin KD Chart the point chart is not a type of its
own but actually a special kind of Line Chart. The resulting display is
obtained by painting markers instead of lines as we will see in the

following code sample.
The process for creating a point chart is very simple as described below:

» Set upalinediagram and configure its pen to Qt::NoPen.

» Display its data values marker attributes.

Point Sample Code

53

The following code sample is going through the process described above to obtain a
very simple point chart. It is based on the exanpl es/ W dget / Si npl e which code has
been dslightly modified to display a Point diagram.

/1 Hide the lines

wi dget . i neDi agram()->setPen(Q::NoPen);

/1 Set up the Attributes

Dat aVal ueAttri butes dva(widget.|ineDi agran()->dataVal ueAttributes());
Marker Attri butes nma(dva.nmarkerAttributes());
TextAttributes ta(dva.textAttributes());
ma. setVisible(true);

/1 display val ues or not

ta.setVisible(false);

dva.set Text Attributes(ta);

dva. set Marker Attributes(ma);

dva.setVisible(true);

wi dget . | i neDi agran() - >set Dat aVal ueAttri butes(dva);

This sample code is making use of a KDChart W dget and a KDChar t Li neDi agr am
but of course the processisvery similar if we were working with akDChar t Chart .

We recommend you to run the complete example presented in the following Tips
section.

Points Attributes

As you have probably deduced from the section above, point charts are line charts
configured with no pen to avoid displaying the lines and using the generic classes
KDChar t Dat aVal ueAt tri but es and its KDChart Mar ker At t ri but es available to
all other diagram types supported by KD Chart 2.0.

For this reason we will for now point you to the sections related to those subjects and in
particular to Chapter 5 - Customizing your Chart - Section Markers or Chapter 9 -

Advanced Charting - Section Data Vaue Manipulation and finalize this section by
implementing afull featured point chart in the Tips section below.

Tips and Tricks

In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

A complete Point Example

In the following implementation we want to be able to:

« Beableto configure the points styles, color and size.
» Display datavaluesor hideit.

e Shift between points and lines charts

We are using a KDChart Chart class and also an home made Tabl eMbdel for the
convenience. It isderived from QAbst r act Tabl eMbdel .

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This alows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model datafiles.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the exanpl es/ t ool s directory of your KD Chart installation.

Let us concentrate on our Line chart implementation for now and consult the following
files: other needed files like the ui, pro , grc ,CSV and main.cpp files can be consulted
from the exanpl es/ Li nes/ Poi nt Chart directory of your installation.

/**

** Copyright (C) 2006 Kl arAsl vdal ens Datakonsult AB. Al rights reserved.

* %

5 ** This file is part of the KD Chart library.

* %

** This file may be distributed and/or nodified under the terns of the

** GNU General Public License version 2 as published by the Free Software

** Foundation and appearing in the file LICENSE GPL included in the
10 ** packaging of this file.

* %

** |jcensees holding valid conmercial KD Chart |icenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with

** the Software.
15 * %

** This file is provided AS | S with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
** WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.

* %

** See http://ww. kdab. net/ kdchart for
20 ** i nformati on about KDChart Commercial License Agreenents.
** Contact info@dab.net if any conditions of this

** |jicensing are not clear to you.
* %

25 **/

#i f ndef MAI NW NDOW H
#def i ne MAI NW NDOW H

30 #i ncl ude "ui _mai nwi ndow. h"
#i ncl ude <Tabl eModel . h>

namespace KDChart {
class Chart;
35 cl ass Li neDi agram

}

55

40

45

50

55

60

65

cl ass Mai nW ndow : public QN dget, private U ::MinW ndow

Q OBJECT
public:

Mai nW ndowm QW dget* parent = 0);
private slots:

void on_lineTypeCB_current|ndexChanged(const QString & text);
voi d on_pai nt Val uesCB_t oggl ed(bool checked);
voi d on_pai nt Mar ker sCB_t oggl ed(bool checked);

voi d on_pai ntLi nesCB_t oggl ed(bool checked);
voi d on_markersStyl eCB_current | ndexChanged(const QString & text);
voi d on_mar ker sW dt hSB_val ueChanged(int i);
voi d on_mar ker sHei ght SB_val ueChanged(int i);
private:
KDChart:: Chart* mchart;
KDChart : : Li neDi agrant m | i nes;
) Tabl eModel m nodel ;

#endi f /* MAI NW NDOW H */

In the above code we bring up the KDChart namespace as usual and declare our dots.
The purpose is to let the user configure its line chart attributes manually from the GUI.
As you can see we are using a KDChartChart object (m_chart), a KDChartLineDiagram
object (m_lines), and our home made TableModel (m_model).

The implementation is similar to the line chart implementation presented earlier:

10

15

20

25

IR R RS EEEEEEEREEEEEEREEEEEEREEEEEEREREEEEREEEEEEEEEEEEEEEEEEEEEEEE

* %

* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

Copyright (C) 2006 Kl arAal vdal ens Dat akonsult AB. All rights reserved.
This file is part of the KD Chart library.

This file may be distributed and/or nodified under the terms of the
GNU General Public License version 2 as published by the Free Software
Foundation and appearing in the file LICENSE. GPL included in the
packaging of this file.

Li censees hol ding valid commercial KD Chart |icenses nay use this file in
accordance with the KD Chart Commercial License Agreement provided with
the Software.

This file is provided AS IS with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.

See http://ww. kdab. net/ kdchart for
informati on about KDChart Commercial License Agreenents.

Contact info@dab.net if any conditions of this
licensing are not clear to you.

LA R EEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEERY]

#i ncl ude "mai nwi ndow. h"

#i ncl ude <KDChart Chart >

56

30

35

#i ncl ude <KDChart Li neDi agr an>

#i ncl ude <KDChart Text Attri butes>

#i ncl ude <KDChart Dat aVal ueAttri but es>
#i ncl ude <KDChart Mar ker Attri butes>

usi ng nanmespace KDChart;

Mai NW ndow: : Mai nW ndow(QW dget* parent)
QN dget (parent)

@HBoxLayout * chart Layout = new QHBoxLayout(chartFrame);

":/data");

m chart - >coor di nat ePl ane() - >repl aceDi agram(m.lines);
m chart - >set d obal Leadi ng(20, 20, 20, 20);

voi d Mai nW ndow: : on_I| i neTypeCB_current | ndexChanged(const QString & text)

m | i nes- >set Type(Li neDi agram : Normal);

acked"

m | i nes- >set Type(Li neDi agram : St acked);

rcent”

m | i nes->set Type(Li neDi agram : Percent);

40 {
setupUi (this);
m chart = new Chart();
45 chartLayout - >addW dget (m chart);
m_nodel . | oadFr omCSV(
/1 Set up the diagram
50 m |ines = new LineDi agran();
m | i nes- >set Mbdel (&m nodel);
55 on_pai nt Li nesCB_t oggl ed(fal se);
on_pai nt Mar ker sCB_t oggl ed(true);
}
60 {
if (text == "Nornal"
else if (text == "St
65 else if (text == "Pe
el se
gWarning ("
70 m chart - >updat e() ;

75

80

85

90

95

Does not match any type");

voi d Mai nW ndow: : on_pai nt Val uesCB_t oggl ed(bool checked)
{

const int col Count

for (int

i Col umm

= 0;

m_| i nes- >nodel () - >col umCount (m_| i nes->root | ndex());
i Col um<col Count ; {
Dat aVal ueAttri butes a(mlines->dataVal ueAttributes(i Colum));

++i Col um)

@Brush brush(m.lines->brush(i Colum));
TextAttributes ta(a.textAttributes());
ta.setRotation(0);

ta. set Font (QFont (

" Coni ¢

ta. set Pen(QPen(brush. col 02(3));

if (checked)

ta.setVisible(true);

el se

ta.setVisible(false);
a.setVisible(true);
a.setTextAttributes(ta);
m | i nes- >set Dat aVal ueAttri butes(i Colum, a);

m chart - >updat e() ;

voi d Mai nW ndow: : on_pai nt Li nesCB_t oggl ed(
{

const int col Count

for (int

i Col unm

= 0;

m_| i nes->nodel ()->col umCount (m_| i nes->root | ndex());
i Col utm<col Count ;

57

bool checked)

++i Col um) {

100 Dat aVal ueAttri butes a(mlines->dataVal ueAttributes(i Colum));
@Brush lineBrush(mlines->brush(i Colum));
if (checked) {
QPen linePen(|ineBrush.color());

m | i nes->setPen(iColum, |inePen);
105
el se
) m | i nes->set Pen(i Colum, Q::NoPen);
m chart - >updat e() ;
110 }

voi d Mai nW ndow: : on_pai nt Mar ker sCB_t oggl ed(bool checked)
{

115 /] set up a nap vmth di fferent marker styles
Mar ker Attri but es: : Marker Styl esMap nmap;
map. i nsert (NarkerAttrlbutes:.Narkequuare)
map. i nsert(Marker Attributes:: MarkerCircle);
map. i nsert (Mar ker Attri butes:: MarkerRing);
120 map. i nsert (Mar ker Attri butes:: MarkerCross);
map. i nsert (Mar ker Attri but es: : Mar ker Di anond) ;

PwWONDFRO

const int col Count = mlines->nobdel ()->col umCount (m_|ines->root|ndex());

125 for (int iColum = 0; iColumm<col Count; ++i Columm)

Dat aVal ueAttri butes dva(m.lines->dataVal ueAttributes(i Colum));

@Brush |ineBrush(m.lines->brush(i Colum));

TextAttributes ta (dva.textAttributes());

if (paintVal uesCB->i sChecked())
130 ta.setVisible(true);

el se

ta.setVisible(false);

Mar ker Attributes ma(dva.markerAttributes());

ma. set Mar ker St yl esMap(map);
135 ma. set Mar ker Si ze(QS ze(mar ker sW dt hSB- >val ue(),

mar ker sHei ght SB- >val ue()))

switch (markersStyl eCB->currentlndex()) {
case 0:
140 br eak;
case 1:
ma. set Marker Styl e(MarkerAttributes:: MarkerCircle);
br eak;
case 2:
145 ma. set Marker Styl e(Marker Attri butes: : Marker Square);
br eak;
case 3:
ma. set Marker Styl e(Marker Attri butes: : Marker Di anond) ;
br eak;
150 case 4:
ma. set Marker Styl e(Marker Attri butes: : Marker 1Pi xel);
br eak;
case 5:
ma. set Marker Styl e(Marker Attri butes: : Marker 4Pi xel s);
155 br eak;
case 6:
ma. set Mar ker Styl e(MarkerAttributes:: MarkerRing);
br eak;
case 7:
160 ma. set Marker Styl e(Marker Attri butes:: MarkerCross);
br eak;
case 8:
ma. set Marker Styl e(Marker Attri butes: : Marker Fast Cross) ;
br eak;
165

QPen mar ker Pen(i neBrush. color());

ma. set Pen(mar ker Pen);
ma.setVisible(true);

58

170 dva.set Text Attributes(ta);
dva. set Marker Attri butes(ma);

if (checked)
dva.setVisible(true);
175 el se
dva.setVisible(false);
m | i nes- >set Dat aVal ueAttri butes(i Col um, dva);

}
180 m chart - >updat e() ;
}
voi d Mai nW ndow: : on_nar ker sStyl eCB_current | ndexChanged(const QString & text)
185 {
Q UNUSED(text);
if (paintMarkersCB->i sChecked())
on_pai nt Mar ker sCB_t oggl ed(true);
}
190

voi d Mai nW ndow: : on_nar ker sW dt hSB_val ueChanged(int i)
{

Q UNUSED(i);
195 mar ker sHei ght SB- >set Val ue(mar ker sW dt hSB- >val ue());
if (paintMrkersCB->i sChecked())
on_pai nt Marker sCB_t oggl ed(true);

}
200 voi d Mai nW ndow: : on_nar ker sHei ght SB_val ueChanged(int /*i*/)

mar ker sW dt hSB- >set Val ue(mar ker sHei ght SB- >val ue());
if (paintMrkersCB->i sChecked()
on_pai nt Mar ker sCB_t oggl ed(true);
205 }

Here we will not comment in details the code as it is similar to what we have seen
beforein our line chart example, but only pick up the interesting part of it.

In order to get a point chart we paint or hide the lines by setting our line diagram pen:

voi d Mai nW ndow: : on_pai nt Li nesCB_t oggl ed(bool checked)
{

const int col Count = mlines->nodel ()->col umCount(m.|ines->rootlndex());
for (int iColum = 0; iColumm<col Count; ++i Col um
Dat aval ueAttributes a(m.lines->dat aval ueAt tri but es(iColum));
@Brush |ineBrush(m.lines->brush(iColum));
if (checked) {
QPen linePen(lineBrush.color());
m | i nes->set Pen(i Colum, |inePen);

el se
m | i nes->set Pen(i Colum, Q::NoPen);

m chart - >updat e() ;

We need to retrieve the pen color before resetting it to its origina value, and do that by
looping through the datasets.

59

Note

It is important to know that have three levels of precedence when setting
the attributes: Which means that once you have set the attributes for a

* Global: Weak
e Per column: Medium
* Percdl: Strong

the attributes: Which means that once you have set the attributes for a
column or a cell, you will not be able to change those settings by calling
the "global" method to reset it to another value, but instead call the per
column or per index setter. As demonstrated in the above code.

For us to be able to store different Markers style we make use of
Mar ker At tri but es: : Mar ker Styl esMap map which isvery convenient in this case.

Mar ker Attri but es: : Marker Styl esMap nap;
map.insert(0, MarkerAttributes::MrkerSquare);
map.insert(1, MarkerAttributes::MarkerCrcle);
map.insert(2, MarkerAttributes::MarkerRing);
map.insert(3, MarkerAttributes:: MarkerCross);
map.insert(4, MarkerAttributes:: MarkerDi amond);

Mar ker At tri but es ma(dva. markerAttributes());
ma. set Marker Styl esMap(nap);

The user may also change the size of the marker form the GUI and this is implemented
straight forward by using KDChar t Mar ker At t ri but es method set Mar ker Si ze() .

ma. set Marker Si ze(QSi ze(mar ker sW dt hSB- >val ue(),
mar ker sHei ght SB->val ue()));

This example is available to compile and run from the exanpl es/ Li nes/ Poi nt Chart
directory in your KD Chart installation. We recommend you to run it. The widget
displayed by the above code is shown in the figure below.

Figure4.14. A Full featured Point Chart

60

“‘Mj SENE]

[%| Display Data Values 3

Line Chart Type:

Normal

[] Paint Lines

Markers: ¢
[Paint Markers
Markers Style o5 o5

Markers Size:

KN
-
[

Area Charts
Tip

Even more than a Line Chart (of which they are attributes) an area chart
can give agood visual impression of different datasets and their relation to
each other.

For example the area chart type might be the best choice for showing how
several sources contributed to increasing ozone values in a conurbation
during a summer's months.

Area charts are Line Charts and thus based upon several points which are connected by
lines—the difference to the line chart is that the area below a line is filled by the
respective dataset's color. This gives a clear appreciation of each dataset's relative
values.

In order to make it possible to see al points, since some are covered by another dataset's
area, we have introduced an attribute which allow the user to configure the level of
transparency (more about that in the Attributes paragraph of this section. KD Chart 2.0
supports of course Area display for al subtypes of line charts and thus allow also the
user to display the non-overlapping line types. The following types can be displayed
very simply in Area mode:

e Normal Line Area
e Stacked Line Area.

e Percent Line Area.

61

Figure4.15. An Area Chart

Note

KD Chart uses the term "area' in two different ways which can be

distinguished easily:

¢ Inthischapter it stands for a specia chart type or even more accurately
asaline diagram attribute.

* Inother context it can also point to the different (normally rectangular)

parts of a chart like for example the legend area or the headers area.

This varying usage of the word "area" should Not cause a lack of clarity:
In the context of this special section on area charts the word is clear, in
the rest of the manual it just means a part of a chart.

Displaying the area for a dataset or the whole diagram is straight forward:
» Create a LineAttribute object by caling

KDChar t Li neDi agram : | i neAttri butes

¢ Digplay it. You can aso configure the level of transparency.

Area Sample Code

62

Let us make this more concrete by looking at the following lines of code and reproduce
the process described above:

/]l Create a LineAttribute object

LineAttributes la = mlines->lineAttributes(index);
// set Display inplicitely

| a.setDisplayArea(true);

/1 Assign to the diagram

m | i nes->setLineAttributes(index, la);

Of course Brush and Pen settings as well as all other configurable attributes accessible
by the diagram itself can be set, which give the user alot of flexibility (display or hide
data values, markers, lines, configure colors etc ...).

Note

KDChart Li neAt t ri but es can be set for the whole diagram, for a dataset
or for aspecific index (see sample code above), as for any other attributes.

Area Attributes

There are no specifical attributes related to the Area chart. As explained above Area
charts display mode is implemented as a Line Attribute. Of course the generic attributes
common to all chart types are availables, which give us full flexibility to configure our
Areachart.

Tips and Tricks

In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

A complete Area Example
Note

This example has already been presented in details Section - A
Compl ete Line Exanple. You dont need to go through it, if you
already have studied the section above.

In the following implementation we want to be able to:

63

e Display datavalues
» Shift line types (Normal, Stacked, Percent)

e Display areasfor each dataset on its own and for the whole diagram

We are using a KDChart Chart class and also an home made Tabl eMbdel for the
convenience. It isderived from QAbst r act Tabl eMbdel .

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This alows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model datafiles.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the exanpl es/ t ool s directory of your KD Chart installation.

Let us concentrate on our Line chart implementation for now and consult the following
files: other needed files like the ui, pro , grc ,CSV and main.cpp files can be consulted
from the exanpl es/ Li nes/ Advanced directory of your installation.

/**

** Copyright (C) 2006 Kl arAsl vdal ens Datakonsult AB. Al rights reserved.

* %

5 ** This file is part of the KD Chart library.

* %

** This file may be distributed and/or nodified under the terns of the

** GNU General Public License version 2 as published by the Free Software

** Foundation and appearing in the file LICENSE GPL included in the
10 ** packaging of this file.

* %

** |jcensees holding valid conmercial KD Chart |icenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with

** the Software.
15 * %

** This file is provided AS | S with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
** WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.

* %

** See http://ww. kdab. net/ kdchart for
20 ** i nformati on about KDChart Commercial License Agreenents.
** Contact info@dab.net if any conditions of this

** |jicensing are not clear to you.
* %

25 **/

#i f ndef MAI NW NDOW H
#def i ne MAI NW NDOW H

30 #i ncl ude "ui _mai nwi ndow. h"
#i ncl ude <Tabl eModel . h>

namespace KDChart {
class Chart;
35 cl ass Li neDi agram

}

cl ass Mai nW ndow : public QN dget, private U ::MinW ndow
{
40 Q OBJECT

public:
Mai nW ndowm QW dget* parent = 0);

45 private slots:

void on_lineTypeCB_current|ndexChanged(const QString & text);

voi d on_pai nt Val uesCB_t oggl ed(bool checked);

voi d on_t hreeDMbdeCB_t oggl ed(bool checked);
50 voi d on depthSB val ueChanged(int i);

voi d on_ani mat eAr easCB_t oggl ed(bool checked);

voi d on_hi ghl i ght AreaCB_t oggl ed(bool checked);

voi d on_hi ghl i ght AreaSB_val ueChanged(int i);

voi d setHighlightArea(int row, int colum, int opacity, bool checked, bool doUpd
55 void slot_tinmerFired();

private:
KDChart:: Chart* mchart;
KDChart : : Li neDi agrant m.|i nes;
60 Tabl eMbdel m nodel ;
int mcurRow,
int mcurCol um;
) int mcurQpacity;
65

#endi f /* MAI NW NDOW H */

70

In the above code we bring up the KDChart namespace as usual and declare our dots.
The purpose is to let the user configure its line chart attributes manually from the GUI.
Asyou can see we are using a KDChartChart object (m_chart), a KDChartLineDiagram
object (m_lines), and our home made TableModel (m_model).

Theimplementation is similar to the line chart implementation presented earlier:

1

/**

** Copyright (C) 2006 Kl arAsl vdal ens Dat akonsult AB. Al rights reserved.

* %

5 ** This file is part of the KD Chart library.
* %
** This file may be distributed and/or nodified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE. GPL included in the

10 ** packaging of this file.
* %
** Licensees holding valid comrercial KD Chart |icenses may use this file in
** accordance with the KD Chart Commercial License Agreenment provided wth
** the Software.

15 * %
** This file is provided AS IS with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
** WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.
* %
** See http://ww. kdab. net/kdchart for

20 ** i nformati on about KDChart Commercial License Agreenents.
* %
** Contact info@dab.net if any conditions of this

** |jcensing are not clear to you.
* %

65

25

30

35

40

45

50

55

60

65

70

75

80

85

90

**/

#i

#i
#i
#i
#i
#i

#i

ncl ude "nmai nwi ndow. h"

ncl ude <KDChart Chart >

ncl ude <KDChart Li neDi agranm>

ncl ude <KDChart Text Attri butes>

ncl ude <KDChart Dat aVal ueAttri but es>
ncl ude <KDChart ThreeDLi neAttri but es>

ncl ude <QrTi ner>

usi ng nanespace KDChart;

Mai nNW ndow: : Mai nW ndow(QW dget* parent)

{

}

QN dget (parent)
setupUi (this);

m_cur Col utm = -1;
m cur Opacity = 0;

HBoxLayout * chart Layout = new QHBoxLayout(chartFrame);
m chart = new Chart();
chart Layout - >addW dget (m chart);

m nodel . | oadFronCSV(":/data");

/1 Set up the diagram
m | ines = new LineDi agran();
m_| i nes- >set Mbdel (&m nodel);

Cartesi anAxi s *xAxi s = new Cartesi anAxis(mlines);
Cartesi anAxis *yAxis = new CartesianAxis (mlines);
XAxi s->set Position (KDChart:: Cartesi anAxi s::Bottom);
YAXi s->set Position (KDChart::CartesianAxis::Left);
m | i nes->addAxi s(XAxis);

m | i nes->addAxi s(yAxis);

m chart - >coor di nat ePl ane() - >repl aceDi agram(m.|ines);
m chart - >set d obal Leadi ng(20, 20, 20, 20);

/T Instantiate the tinmer

Qlinmer *tinmer = new QTiner(this);

connect (tinmer, SIGNAL(timeout()), this, SLOT(slot tinmerFired()));
timer->start(30);

voi d Mai nW ndow: : on_I| i neTypeCB_current | ndexChanged(const QString & text)
{

}

if (text == "Nornal"

m | i nes- >set Type(LineDi agram : Normal);
else if (text == "Stacked"

m | i nes->set Type(LineDi agram : St acked);
else if (text == "Percent"

m | ines- >set Type(Li neDi agram : Percent);
el se

gWarning (" Does not match any type");

m chart->updat e();

voi d Mai nW ndow: : on_pai nt Val uesCB_t oggl ed(bool checked)
{

const int col Count = m|ines->nodel ()->col umCount(m.|ines->rootlndex());
for (int iColum = 0; iColum<col Count; ++i Colum)
Dat aVal ueAttributes a(mlines->dataVal ueAttributes(i Colum));
@Brush brush(m.lines->brush(i Colum));
TextAttributes ta(a.textAttributes());
ta.setRotation(0);

66

95 ta.setFont(QFont("Comc", 10));
ta.setPen(QPen(brush.color()));
if (checked)
ta.setVisible(true);
100 el se
ta.setVisible(false);
a.setVisible(true);
a.set TextAttributes(ta);
m | i nes- >set Dat aVal ueAttri but es(i Colum, a);
105
m chart ->updat e();
}
}{/oi d Mai nW ndow: : on_ani mat eAr easCB_t oggl ed(bool checked)
110
if(checked){
hi ghl i ght Ar eaCB- >set CheckState(Q:: Unchecked);
m _cur Row = 0;
m cur Col um = 0;
115 }el se{
) m_cur Col utm = -1;
hi ghl i ght AreaCB- >set Enabl ed(! checked);
hi ghl i ght Ar eaSB- >set Enabl ed(! checked);
120 /1 un-highlight all previously highlighted col ums
const int rowCount = m.lines->nodel ()->rowCount();
const int col Count = m|ines->nodel ()->col urmOount()
for (int iColum = 0; i Col unm<col Count; ++i Col umm){
set H ghlightArea(-1, iColum, 127, false, false);
125 for (int iRow = 0; i Rowsr owCount ++i Row)
11 m | i nes->resetLineAttri but es(celllndex)
set Hi ghli ght Area(i Row, iColumm, 127, false, false);
m chart - >updat e();
130) m cur Qpacity = O;
voi d Mai nW ndow: : sl ot _timerFired()
135 if(mcurColum < 0) return;
m cur Opacity += 8;
if(mcurOpacity > 255){
set Hi ghl i ght Area(m curRow, m curColum, 127, false, false);
m curOpacity = 5;
140 ++m_cur Row;
if(mcurRow >= mlines->nodel ()->rowCount (m.lines->rootlndex())){
m _cur Row = O0;
++m_cur Col um;
if(mcurColum >= mlines->npbdel ()->col umCount(m.ines->rootlndex()))
145 m_cur Col um = 0;
}
set Hi ghl i ght Area(m curRow, m curCol um, mcurQpacity, true, true);
150

155

160

voi d Mai nW ndow: : set Hi ghl i ght Area(int row,

if(row< 0){
/1 highlight a conpl ete dataset

int colum,

int opacity,

Li neAttributes la = mlines->lineAttributes(colum);

if (checked) {

| a.setDi splayArea(true);

| a. set Transparency(opacity);
} else {

| a. set Di spl ayArea(false);

m | i nes->setLineAttributes(colum,

}el se{
/1 highlight two segnents only

67

la);

bool

checked, bo

165

170

175

180

185

190

195

200

205

210

215

220

225 {

230

if(

}
i1 f(

}

row){
Qwodel I ndex cell I ndex(m.lines->nodel ()->i ndex(row1, colum, m.lines->r
if (checked) {
Li neAttributes la(mlines->lineAttributes(celllndex));
| a.set Di spl ayArea(true);
| a. set Transparency(255-opacity);
/Il set specific line attribute settings for this cell
m | i nes->setLineAttributes(celllndex, la);
} else {
/1 remove any cell-specific line attribute settings fromthe indexed
m | ines->resetlLineAttributes(celllndex);

row < mlines->nodel ()->rowCount (m.|ines->rootlndex())){
QWbdel | ndex cel I I ndex(m_|ines->nodel ()->i ndex(row, columm, m.lines->roo
if (checked) {
Li neAttributes la(mlines->lineAttributes(celllndex));
| a.setDisplayArea(true);
| a. set Transparency(opacity);
/1 set specific line attribute settings for this cell
m | ines->setlLineAttributes(celllndex, la);
} else {
/1 remove any cell-specific line attribute settings fromthe indexed
m | ines->resetlLineAttributes(celllndex);

i}f(doUpdat e)

m chart->update();

voi d Mai nW ndow: : on_hi ghl i ght AreaCB_t oggl ed(bool checked)
set H ghl i ght Area(-1, highlightAreaSB->val ue(), 127, checked, true);

voi d Mai nW ndow: : on_hi ghl i ght AreaSB_val ueChanged(int i)

Q UNUSED(i);
if (highlightAreaCB->i sChecked())

on_hi ghli ght AreaCB_t oggl ed(true);

on_hi ghl i ght AreaCB_t oggl ed(fal se);

voi d Mai nW ndow: : on_t hr eeDvbdeCB_t oggl ed(bool checked)
{

ThreeDLi neAttri butes td(m.lines->threeDLi neAttributes());
td. set Dept h(dept hSB->val ue());
if (checked

)
td. set Enabled(true);

e
td. setEnabl ed(false);
m | i nes- >set ThreeDLi neAttributes(td);

m chart - >updat e();

voi d Mai nW ndow: : on_dept hSB_val ueChanged(int i)

Q UNUSED(i);
if (threeDWvbdeCB->i sChecked())

on_t hreeDvbdeCB_t oggl ed(true);

68

First of all we are adding our chart to the layout as for any other Qt widget. Load the
data to be display into our model, and assign the model to our line diagram. We aso
want to set up a QTi ner to be able to run our animation. Finally we assign the diagram
to our chart.

d—lBoxLayout * chartLayout = new QHBoxLayout(chartFrane);
m chart = new Chart();
chart Layout - >addW dget(m chart);

m _nodel . | oadFronCSV(":/data");

/1 Set up the diagram
m | ines = new Li neDi agran();

m | i nes- >set Mbdel (&m nodel

m chart - >coor di nat ePl ane() - >r epl aceDi agran(mlines);
/] Instantiate the tiner
QTimer *timer = new QTinmer(thi
connect (tiner, SIGNAL(ti meout (
timer->start(40);

)sg this, SLOT(slot_tinmerFired()));

The user should be able to change the default sub-type via a combo box from the GUI.
This can be done by using KDChar t Bar Di agr am : set Type() asshown below and by
updating the view.

if (text == "Nornal"

m | i nes- >set Type(Li neDi agram : Normal);
else if (text == "Stacked")

m | i nes- >set Type(Li neDi agram : St acked);
else if (text == "Percent"

m_| i nes- >set Type(Li neDi agram : Percent);

;n'_i:'hart ->update();

We want the user to be able to display or hide the data values from the GUI, and also
change the default font for our data values labels to make it nicer.

const int col Count = mlines->nodel ()->col umCount(m.|ines->rootlndex());
for (int iColum = 0; i Col um<col Count; ++i Colum) {

Dat aVal ueAttri butes a(mlines->dat aval ueAt tri but es(iColum));

@Brush brush(mlines->brush(i Colum));

TextAttributes ta(a.textAttributes());

ta.setRotation(0);

ta.setFont(QFont("Comc", 10));

ta.setPen(QPen(brush.color()));

if (checked)
ta.setVisible(true);
el se
ta.setVisible(false);
a.setVisible(true);
a.set TextAttributes(ta);
m | i nes- >set Dat aVal ueAttri butes(i Colum, a);

}
m chart - >updat e();

69

In the code above, we make sure our data values labels will be painted using the dataset
default color by retrieving the brush for each dataset and assigning the color of the brush
to the pen.

Note

It is important to know that have three levels of precedence when setting
the attributes: Which means that once you have set the attributes for a
* Global: Weak

* Per column: Medium

e Percell: Strong

the attributes: Which means that once you have set the attributes for a
column or a cell, you will not be able to change those settings by calling

the "global" method to reset it to another value, but instead call the per
column or per index setter. As demonstrated in the above code.

The user should be able to display the area for one or several dataset.

LineAttributes la =

m | ines->lineAttributes(

m | i nes- >nodel ()->i ndex(0, columm, mlines->rootlndex()));
(

iT (checked) {

| a.setDi spl ayArea(true);

| a. set Transparency(opacity);
} else {

| a.setDi spl ayArea(false);

m | ines->setLineAttributes(colum, la);

'm'_i:hart ->updat e();

Thisis implemented by configuring our line attributes and assign them by dataset to the
diagram, as shown above.

The same procedure is used for us to be able to run our animation. You can of course
learn more about this part of the code which is more related to Qt programming by
consulting exanpl es/ Li nes/ Advanced/ mai nwi ndow. cpp.

This example is available to compile and run from the exanpl es/ Li nes/ Advanced

directory in your KD Chart installation. We recommend you to run it. The widget
displayed by the above code is shown in the figure below.

70

Figure4.16. A Full featured Area Chart

[] Display Data Values

Line Chart Type:

Show Areas
[%] Highlight Area E

Animate

[] Highlight

/\/

Polar coordinate plane

KD Chart makes use of the Polar coordinate system, and in particular its
KDChart : : Pol ar Coor di nat ePl ane class for displaying chart types like Pie, Polar
and Ring.

In this section we will describe and present each of the chart types which uses the Polar
coordinate plane.

In general to implement a particular type of chart, just create an object of this type by
calling KDChar t [t ype] Di agr am or if your are using KDChar t W dget you will need
to cal its set Type() and specify the appropriate chart type. (eg Widget::Pie,
Widget::Polar etc...)

Pie Charts
Tip
Pie charts can be used to visualize the relative values of a few data cells
(typicaly 2..20 values). Larger amounts of items can be hard to distinguish
in a pie chart, so a Percent Bar Chart might fit your needs better then. Pie
charts are most suitable if one of the data elements covers at least one
forth, preferably even more of the total area.

A good example is the distribution of market shares among products or

71

vendors.

While pie charts are nice for displaying one dataset there is a
complementary chart type you might choose to visualize several datasets:
the Ring Chart, a circular multi dataset chart type described in the Ri ng
Chart s section furhter on.

Pie charts typically consist of two or more pieces any number of which can be shown
'‘exploded' (shifted away from the center) at different amounts, starting position of the
first pie can be specified and your pie chart can be drawn in three-D look. Activating the
pie chart mode is done by caling the KDChartWdget function set Type(
KDChartWdget::Pie) or by creating an object of this type using the
KDChart Pi eDi agr amclass.

Note

Three-dimensional look of the piesis no special feature you can enable by
setting its ThreeD attributes, we will describe that more in details Chapter
5 - Customizing your Chart - ThreeD section further on.

Simple Pie Charts
Tip

A simple pie chart shows the data without emphasizing a special item.

Figure4.17. A Smple Pie Chart

72

KD Chart by default draws two-dimensional pie charts when in pie chart mode so no
method needs to be called to get one. We are describing more in details about how to
obtain three dimensional look for apie chart in the following Pie Attributes section.

Exploding Pie Charts
Tip

Explode individual segments to emphasize individual data.

Figure 4.18. An Exploding Pie Chart

73

We will go through al the configuration possibilities in the Pie Attributes section
below, but let us study some code sample first.

Code Sample

For now let us make the above description more concrete by looking at the following
code sample based on the Si npl e W dget example we have been demonstrating above
(Chapter 3 - Two Ways - Wdget Exanpl e). In this example we demonstrate
how to configure your Pie diagram and change its attributes when working with a
KDChar t W dget .

First include the appropriate headers and bring in the "K DChart namespace:

#i ncl ude <QAppli cati on>

#i ncl ude <KDChart W dget >

#i ncl ude <KDChart Pi eDi agr an»
#i ncl ude <QPen>

usi ng nanmespace KDChart;

We need to include KDChar t Pi eDi agr amin order to be able to configure some of its

74

attributes as we will see further on.

int main(int argc, char** argv) {
QApplication app(argc, argv);
W dget widget;
/1 our Wdget can be configured
/1l as any Q@ W dget
wi dget . resi ze(600, 600);
/] store the data and assign it
Qvect or< doubl e > vecO, vecl;
VeCO<<5<<1<<3<<4<<1
vec1<<3<<6<<2<<4<<8,
vec2 << 0 << 7 << 1 << 2 << 1;
wi dget . set Dataset (0, vecO, "vecO");
wi dget . set Dataset(1, vecl, "vecl");
wi dget . set Dat aset (2, vec2, "vec2");
wi dget . set Type(Wdget::Pie);

We just need to change the default chart type (Line Charts) by calling the
KDChart W dget : : set Type method.

Now let us configure a Pen to draw aline arount the Pie and its section

QPen pi ePen(W|dget pi eDi agran()->pen());
pi ePen. set Wdth(3);

pi ePen.setColor(Q::yellow);

/1 call your diagramand set the new pen
wi dget . pi eDi agram() - >set Pen(2, piePen);

Here we are configuring the pen "attribute". As you can see it is straight forward.
KDChar t W dget : : pi eDi agran() alow usto get a pointer to our widget diagram. As
you can see it is very simple to assign a new pen to our diagram by calling the diagram
KDChart Abst r act Di agr am : set Pen() method.

Finally we conclude our small example:

wi dget . show() ;

return app. exec();

See the screen-shot below to view The resulting chart displayed by the above code.

Figure4.19. A Simple Pie Widget

75

This example can be compiled and run from the following location of your KD Chart
installation exanpl es/ Pi e/ Si npl e

Note

Configuring the attributes for a KDChar t Pi eDi agr am making use of a
KDChar t Chart is done the same way as for a KDChar t W dget . You just
need to assign the configured attributes to your pie diagram and assign the
diagram to the chart by calling KDChar t Chart: : repl aceDi agran() .

Pies Attributes

By "Pie attributes’ we are talking about all parameters that can be configured and set by
the user and which are specifics to the Pie Chart type. KD Chart 2.0 APl separates the
attributes specifics to a chart type itself and the generic attributes which are common to
al chart types as for example the setters and getters for a brush or a pen (See
KDChar t Abst r act Di agr amor KDChar t Pi eAbst r act Di agr ametc...

All those attributes have a reasonnable default value that can simply be modified by the
user by caling one of the diagram set function implemented on this purpose
KDChart Pi eDi agram : set Pi eAttri butes().

The procedure is straight forward:

* Create a KDChart:: Pi eAttributes object by caling
KDChar t Pi eDi agram : pi eAttri butes.

76

e Configure this object using the setters available.

* Assign it to your Diagram with the help of one of the setters available in
KDChart : : Pi eDi agr am All the attributes can be configured to be applied for the
whole diagram, for a column, or at a specified index (Qvbdel | ndex).

KD Chart 2.0 supports the following attributes for the Pie chart type. Each of those
attributes can be set and retrieved the way we describe it in our example below:

* Explode: Enable/Disable exploding pie piece(s)

» Explode factor: The explode factor is a greal between 0 and 1, it isinterpreted as a
percentage of the total available radius.

» StartPosition: Set the starting angle for the first dataset. Can only be specified for the
whole diagram.

e Granularity: Set the granularity: the smaller the granularity the more your
diagramsegments will show facettes instead of rounded segments. Can only be
specified for the whole diagram.

* PieAttributess set or retrieve the pie diagram Attributes. (see
KDChar t Abst r act Pi eDi agr am)

e ThreeDPieAttributes. set or retrieve the diagram ThreeDAttributes. (see
KDChar t Abst r act Pi eDi agr am)

Tip

The default explode factor is 10 percent; use set Expl odeFact or to
specify a different factor. This is a convenience function: Calling
set Expl ode(true) does the same as calling set Expl odeFact or (
0.1), and calling set Expl ode(false) does the same as calling
set Expl odeFactor(0.0).

To get a pie chart like the one presented above (having one or several of the pieces
separated from the others in exploded mode) you would have to set its attributes by
caling KDChart Pi eAttri but es: : set Expl ode or
KDChart Pi eAt tri but es: : set Expl odeFact or if you want to change the explode
factore default value and then use the available methods to assing those attributes to
your diagram as shown in the following code sample

/Il 1 - Create a PieAttribute object

PieAttributes pa (mpie->PieAttributes());

/1 2 - Enable exploding, point to a dataset and give the
/1 explode factor passing the dataset nunber and the factor
pa. set Expl odeFactor(0.5);

/1 3 - Assign to your diagram

77

m pi e->set Pi eAttri butes(colum, pa);

Note

Three-dimensional look of the pies can be enable and configured by
setting its ThreeD attributes the same way as we are setting the
PieAttributes in the code sample above, we will describe that more in
details Chapter 5 - Customizing your Chart - ThreeD section further on.

Pie Attributes Sample

Let us make this more concrete by looking at the following sample code that describes
the above process. We recommand you to compile and run the following example which
is located in the exanpl es/Lines/Paraneters directory of your KD Chart
installation.

First of al we areincluding the header files and bring KD Chart hamespace.

#i ncl ude <Q Qui >

#i ncl ude <KDChart Chart >

#i ncl ude <KDChart Pi eDi agr an»

#i ncl ude <KDChartPi eAttri butes>

usi ng nanmespace KDChart;

We have included KDChar t Pi eAt t ri but es to be able to configure exploding for one
of the pie slice. Those attributes are specifical to the Pie types.

In this example we are using a KDChartChart class as wel as a
@Gt andar dl t emvbdel in order to store the data which will be assigned to our
diagram.

m nodel . i nsert Rows(0, 1, QVvodel I ndex());
m nodel .insertColums(0, 6, Qwbdellndex());
for (int row= 0; row < 1; ++row) {
for (int colum = 0; colum < 6; ++colum) {
Qwvbdel I ndex i ndex =
m_nodel . i ndex(row, colum, Qvbdel | ndex());
m nodel . set Dat a(i ndex, Qvariant(rowtl * colum+1l));

}

}

/1l W need a Polar plane for the Pie type

Pol ar Coor di nat ePl ane* pol ar Pl ane =

new Pol ar Coor di nat ePl ane(&m chart);

Il replace the default Cartesian plane with
/'l our Polar plane

m chart. repl aceCoor di nat ePl ane(pol ar Pl ane);

/] assign the npdel to our pie diagram

Pi eDi agrant di agram = new Pi eDi agram
di agr am >set Model (&m nodel) ;

78

After having stored our data into the model, we create a need to replace the default
Cartesian plane against a Polar plane before creating our Pie diagram. In this case, we
want to display a KDChar t Pi eDi agr am As always we need to assign the model to our
diagram. This procedure is of course similar for all types of diagrams.

We are now ready to configure our attributes. We want to explode a section and
configure a Pen to surround it. Let us begin with the specifical Pi eAttri but es.

/1 Configure some Pie specifical attributes

/] explode a section
PieAttributes pa(diagram>pieAttributes());
pa. set Expl odeFactor(0.1);

/1 Assign the attributes
/1 to the diagram
di agram >setPi eAttributes(1, pa);

As for al attributes we call them by using the relevant method available from our
diagram interface, here di agr am >Pi eAt t ri but es() . The second step isto set it up
with our own values and finally we assign it to our diagram. In the above code we
explode the second slice (dataset) in our Pie.

Note

After having configured our attributes we need to assign the attributes to
the diagram. This can be done for the whole diagram, at a specific index or
for a column. Look at the attributes interface and look at the methods
available there to find out those setters and getters.

We want to configure the Pen in order to draw a surrounding line around the exploded
section (dataset) to focus the attention of the reader on this particular section.

/1 Configure a generic attribute

/1 available to all chart types
QPen sectionPen;
sectionPen.setWdth(5);
sectionPen. set Styl e(Q::DashLine);
sectionPen. setColor(Q::magenta);

di agram >set Pen(1, sectionPen);

Of course we could a so have changed the pen for all datasets as well.

Note

The Pen and the Brush setters and getters are implemented at a lower level

79

in our KDChart Abst ract Di agram class for a cleaner code structure.
Those methods are of course used by all types of diagram and their
configuration is very simple and straight forward as you can see in the
above sample code. Create or get a Pen , configure it, call one of the
setters methods available (See KDChart Abstract Di agram h about
those methods).

Our attributes having been configured and assigned we just need to assign our Pie
diagram to our chart and conclude the implementation.

/1 Assign our diagramto the Chart
m chart. coordi nat ePl ane() - >r epl aceDi agr an(di agran);

QvBoxLayout* | = new QvBoxLayout (this);
| - >addW dget (&m chart);
set Layout (1) ;

The above procedure can be applied to any of the supported attributes for all chart types.
The resulting display of the code we have gone through can be seen in the following
screen-shot. We aso recommend you to compile and run the example related to this
section and located in the exanpl es/ Pi e/ Par anet er s directory of your KD Chart
installation.

Figure 4.20. Pie With Configured Attributes

Note

80

ThreeDAttibutes for the different chart types are implemented has an own
class, the same way as for the other attributes. We will talk more in details
about KD Chart 2.0 ThreeD features in the ThreeD section, Chapter 5 -
Customizing your Chart.

Tips and Tricks

In this section we want to go through some examples about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

A complete Pie Example

In the following implementation we want to be able to:

» Configure the Start position .

» Display aPie chart and shift between normal and threeD look.

» Explode one or several dlices and set a surrounding line around exploded sections

* Run an animation (exploding).

In the example below we are using a KDChart Chart class and also an home made
Tabl eModel for the convenience. It isderived from QAbst r act Tabl eMbdel .
TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This allows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model data files.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the exanpl es/ t ool s directory of your KD Chart installation.

Let us concentrate on our Pie chart implementation for now and consult the following
files: other needed files like the ui, pro , grc ,CSV and main.cpp files can be consulted
from the exanpl es/ Pi e/ Advanced directory of your installation.

AR R R AR EEEEEEREEEEEEREEE]

** Copyright (C) 2006 Klari¢¥vdal ens Datakonsult AB. Al rights reserved.
* %

5 ** This file is part of the KD Chart library.
* %

81

10

15

20

25

30

35

** This file may be distributed and/or nodified under the terms of the

** GNU CGeneral Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE. GPL included in the

** packaging of this file.

* %

** Licensees holding valid comrercial KD Chart |icenses may use this file in
** accordance with the KD Chart Commercial License Agreenment provided with
** the Software.

* %

** This file is provided AS IS with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
** WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.
* %

** See http://ww. kdab. net/kdchart for

* % i nformati on about KDChart Commercial License Agreenents.

* %

** Contact info@dab.net if any conditions of this

** |jicensing are not clear to you.

* %
LA R EEEEEEEEEEE R EEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEE LRy

#i f ndef MAI NW NDOW H
#def i ne MAI NW NDOW H

#i ncl ude "ui _mai nwi ndow. h"
#i ncl ude <Tabl eMobdel . h>

class Qi ner;
nanespace KDChart {
class Chart;
cl ass Pi eDi agram

cl ass Mai nW ndow : public QN dget, private U :: MinW ndow

40 {
Q OBJECT
publi c:
Mai nW ndowm QW dget* parent = 0);
45

50

55

60

65

70

75

private slots:
/] start position
voi d on_startPositionSB_val ueChanged(doubl e pos);
voi d on_startPositionSL_val ueChanged(int pos);

/1 expl ode

voi d on_expl odeSubmi t PB_cl i cked();

voi d on_ani mat eExpl osi onCB_t oggl ed(bool toggle);
voi d set Expl odeFactor(int colum, double value);

/1 ani mation
voi d sl ot Next Frane();

/1 3D
voi d on_t hreeDGB_t oggl ed(bool toggle);
voi d on_t hreeDFact or SB_val ueChanged(int factor);

private:
KDChart:: Chart* mchart;
Tabl eModel m nodel ;
KDChart : : Pi eDi agrant m pi e;
QTi mer* mtimer;

int mcurrentFactor;

int mcurrentDirection;
int mcurrentSlice;

}s

#endi f /* MAI NW NDOW H */

82

In the above code we bring up the KDChart namespace as usual and declare our slots.
The purpose is to let the user configure its line chart attributes manually from the GUI.
As you can see we are using a KDChartChart object (m_chart), a KDChartPieDiagram
object (m_pie), and our home made TableModel (m_model).

Note

Before diplaying our Pie diagram we need to implicitely replace the
default cartesian plane by a Polar plane.

1

AR R R R AR EEEEEEREE]

** Copyright (C) 2006 Klari¢¥wdal ens Datakonsult AB. Al rights reserved.
* %
5 ** This file is part of the KD Chart library.

* %
** This file may be distributed and/or nodified under the terns of the
** GNU CGeneral Public License version 2 as published by the Free Software
** Foundati on and appeari ng inthe file LICENSE. GPL included in the

10 ** packaging of this file
* %
** |jcensees holding valid commercial KD Chart licenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with
** the Software.

15 * %
** This file is provided AS IS with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
** WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.
* %
** See http://ww. kdab. net/ kdchart for

20 ** informati on about KDChart Commercial License Agreenents.
* %
** Contact info@dab.net if any conditions of this
** |jcensing are not clear to you.

* %
25 **/

#i ncl ude "mai nwi ndow. h"

#i ncl ude <KDChart Chart >
30 #i ncl ude <KDChart Pi eDi agr an>
#i ncl ude <KDChartPi eAttri but es>
#i ncl ude <KDChart Thr eeDPi eAttri but es>

#i ncl ude <QDebug>
35 #i ncl ude <QTi ner >

usi ng namespace KDChart ;

Mai nNW ndow: : Mai nNW ndow(QW dget * par ent :
40 QN dget (parent), mcurrentFactor(O), mcurrentDirection(1), mcurrentSlice(

{
setupU (this);

@HBoxLayout * chart Layout = new QHBoxLayout(chartFrame);
45 m chart = new Chart();

m chart - >set @ obal Leadi ngLeft(5);

m chart - >set @ obal Leadi ngRight(5);

chartLayout - >addW dget (m chart);

hSBar - >set Vi si bl e(fal se);
50 vSBar - >set Vi si bl e(fal se);

83

m _nodel . | oadFronCSV(":/data");

/1 Set up the di agram

55 Pol ar Coor di nat ePl ane* pol ar Pl ane = new Pol ar Coor di nat ePl ane(m chart);
m chart->repl aceCoor di nat ePl ane(pol ar Pl ane);

m pi e = new Pi eDi agram();

m pi e- >set Mbdel (&m model ;
m _char t - >coor di nat ePl ane() - >r epl aceDi agran{ mpie);

60
mtinmer = new Qliner(this);

) connect (mtimer, SIGNAL(timeout()), this, SLOT(slotNextFranme()));

65 voi d Mai nW ndow: : on_st art Positi onSB_val ueChanged(doubl e pos)
{

const int intValue = static_cast<int>(pos);
startPositionSL->bl ockSi gnal s(true);
startPositionSL->set Val ue(intValue);
70 start Posi ti onSL->bl ockSi gnal s(fal se);
stati c_cast <Pol ar Coor di nat ePl ane*>(m chart - >coor di nat ePl ane()) - >set Start Posi ti on(
m chart->update();

}
75 void Mai nW ndow: : on_st art Posi ti onSL_val ueChanged(int pos)
{

doubl e doubl eval ue = static_cast<doubl e>(pos);
start Posi ti onSB->bl ockSi gnal's(true);
startPositionSB->set Val ue(doubl eValue);
80 startPositionSB->bl ockSi gnal s(fal se);
stati c_cast <Pol ar Coor di nat ePl ane*>(m chart - >coor di nat ePl ane()) - >set Start Posi ti on(
m chart->update();

}
85 voi d Mai nW ndow: : on_expl odeSubmi t PB_cl i cked()

set Expl odeFact or (expl odeDat aset SB- >val ue(), expl odeFact or SB->val ue());
m chart - >updat e();
}
90
voi d Mai nW ndow: : set Expl odeFactor(int col um, doubl e value)

/1 note: We use the per-columm getter nethod here, it will fall back

/1 automatically to return the global (or even the default) settings.
95 Pi eAttributes attrs(mpie->pieAttributes(colum));

attrs. set Expl odeFactor(val ue);

m pi e->set Pi eAttributes(colum, attrs);

m chart - >updat e() ;

}
100
voi d Mai nW ndow: : on_ani mat eExpl osi onCB_t oggl ed(bool toggle)
if(toggle)
mtimer->start(100);
105 el se
m tinmer->stop();
}
voi d Mai nW ndow: : sl ot Next Frane()
110 {
mcurrent Factor += (1 * mcurrentDirection);
f(mcurrentFactor == 0 || mcurrentFactor == 5)
mcurrentDirection = -mcurrentDirection;
115 if(mcurrentFactor == 0) {
set Expl odeFactor(mcurrentSlice, 0.0);
m current Sli ce++;
if(mcurrentSlice == 4)
mcurrentSlice = 0;
120 }

set Expl odeFact or (
m currentSlice,
static_cast <doubl e>(mcurrentFactor) / 10.0);
125) m chart - >updat e();

voi d Mai nW ndow: : on_t hreeDGB_t oggl ed(bool toggle)
{

130 /1 note: We use the global getter nethod here, it will fall back
/1 automatically to return the default settings.
ThreeDPi eAttributes attrs(mpie->threeDPieAttributes());
attrs. set Enabl ed(toggle);
attrs. set Dept h(threeDFactorSB->va| ue());
135 m pi e- >set ThreeDPi eAttri butes(attrs);
) m chart - >updat e() ;

}/oi d Mai nW ndow: : on_t hr eeDFact or SB_val ueChanged(int factor)
140
/1 note: We use the global getter nethod here, it will fall back
I/ automatically to return the default settings.
ThreeDPi eAttributes attrs(mpie->threeDPieAttributes());
attrs. set Enabl ed(threeDGB->i sChecked());
145 attrs.setDepth(factor);
m pi e- >set Thr eeDPi eAttri butes(attrs);
m chart - >updat e();

150

First of all we are adding our chart to the layout as for any other Qt widget. Load the
data to be display into our model, and assign the model to our pie diagram. We aso
want to set up a QTi ner to be able to run our animation. Finally we assign the diagram
to our chart.

d—lBoxLayout* chartLayout = new QHBoxLayout(chartFrame);
m chart = new Chart();
chart Layout - >addW dget(m chart);

m nodel . | oadFronCSV(":/data");

/1 Set up the plane
Pol ar Coor di nat ePl ane* pol ar Pl ane = new Pol ar Coor di nat ePl ane(m chart);
m chart - >r epl aceCoor di nat ePl ane(pol ar Pl ane);

/1 Set up the diagram

m pi e = new Li neDi agram();

m pi e- >set Mbdel (&m nodel);

m chart - >coor di nat ePl ane() - >repl aceDi agram(mpie);

/1 Instantlatethetlner
QTimer *timer = new QTiner(th

is);
connect (tiner, SIGNAL(timeout())

this, SLOT(slot_NextFrame()));

The user should be able to change the start position from the GUI. This can be
implemented by using KDChart Pi eAt t ri but es as shown below and by updating the
view.

85

Pi eAttributes pa(mpie->pieAttributes());
pa.set Start Position(pos);

m pi e->set Pi eAttributes(pa);

m chart->updat e();

We want the user to be able to shift between 3D mode display or the normal standard
display from the GUI.

/1 note: We use the global getter nethod here, it will fall back
/] autonmatically to return the default settings.

ThreeDPi eAttri butes tda(m pie->threeDPieAttributes());

tda. set Enabl ed(toggle);

tda. set Dept h(t hreeDFact or SB- >val ue());

m pi e- >set ThreeDPi eAttri butes(tda);

m chart->updat e();

Note

It is important to know that have three levels of precedence when setting
the attributes: Which means that once you have set the attributes for a

e Global: Weak
e Per column: Medium
e Percell: Strong

the attributes: Which means that once you have set the attributes for a
column or a cell, you will not be able to change those settings by calling
the "global" method to reset it to another value, but instead call the per
column or per index setter. As demonstrated in the above code.

We want the user to be able to explode one or several dlice(s) (dataset) and to configure
the exploding factor.

/1 note: We use the per-columm getter nethod here, it will fall back
/] automatically to return the global (or even the default) settings.
Pi eAttributes pa(mpie->pieAttributes(colum));

pa. set Expl odeFact or (val ue);

m pi e->set Pi eAttri butes(colum, pa);

;n'_;:hart ->updat e() ;

This is implemented by configuring our pie attributes and assign them by dataset to the

86

diagram, as shown above.

The same procedure is used for us to be able to run our animation. You can of course
learn more about this part of the code which is more related to Qt programming by
consulting exanpl es/ Pi e/ Advanced/ mai nwi ndow. cpp.

This example is available to compile and run from the exanpl es/ Pi e/ Advanced
directory in your KD Chart installation. We recommend you to run it. The widget
displayed by the above code is shown in the figure below.

Figure4.21. A Full featured Pie Chart

S PiEGhat) A
Start position: |0.00 H
[
M}

Factor 2

~Explode

I i
)]

Dataset 1

[7] Animate

What's next

For our diagram to be useful we need to be able to display its axis. That will be the
subject of our next section.

87

Chapter 5. Axes

Axes are implemented at different levelsin the KD Chart 2.0 API. KD Chart make use
of Cartesian axis - see KDChart Cart esi anAxi s and Polar Axis which are derived
from the base class for axes KDChar t Abst r act Axi s. .

The user may specify its own set of strings to be used as Axis labels with the
KDChart Abst ract Axi s: : set Label s(const QStringList) method.

Note

Labels specified via setLabels take precedence: If a non-empty list is
passed, KD Chart will use these strings as axis labels, instead of
calculating them. By passing an empty QStringList you can reset the
default behaviour.

For the convenience we can also specify short labelsin our own set of string to be used
as axis labelsin case the normal labels ae too long by using
KDChar t Abst ract Axi s: : set Short Label s(const QStringList)

Axis values and labels text attributes can also be configured. Thus the labels of all of
your axesin all of your diagrams within that Chart will be drawn in same font size, by
default.

The setters and getters for axis labels and their text attributes are implemented in the

axis base class KDChar t Abst r act Axi s, we recommend you to study itsinterface - See
KDChar t Abst ract Axi s. h.

Tip

If you a smaller number of strings than the number od labels drawn at this
axis, KD Chart will iterate over the list, repeating the strings, until all
labels are drawn.

As an example you could specify the seven days of the week as abscissa
labels, which would be repeatedly used then.

Cartesian Axis

The class KDChar t Cart esi anAxi s is used together with the diagrams displayed in a
cartesian coordinate plane and contains the setters and getters related to the axis
specifics to those chart types.

It allows the user to set and retrieve the position (top, bottom, left or right), or the type
(abscissa, ordinate) of the axis, assign or retrieve a title and its text attributes. That is

88

where the axis are painted.

The setters and getters for those specifics cartesian features are implemented in
KDChart Cart esi anAxi s, we recommend you to study its interface - See
KDChar t Car et esi anAxi s. h.

How to configure

In order to add axis to a catesian diagpam we need to use
KDChar t Abstract Cart esi anDi agr am : AddAxi s() method. The diagram takes
ownership of the axis and will deleteit by itself.

To gain back ownership (e.g. for assigning the axis to another diagram) use the
KDChar t Abst ract Di agram : t akeAxi s() method, before calling addAxis on the
other diagram.

Note

KDChart Abst r act Di agr am : t akeAxi s() Removes the axis from the
diagram, without deleting it. The diagram no longer owns the axis, so it is
the caller's responsibility to delete the axis.

Cartesian Axes sample

Let us make the above description more concrete by looking at the following lines of
code based on the Sinple Wdget example we have been demonstrating above
(Chapter 3 - Two Ways - Wdget Exanple). In this example we demonstrate
how to add an X axisand a 'Y axisto your diagram and set the Axis titles when working
with aKDChar t W dget ..

First include the appropriate headers and bring in the "K DChart namespace:

#i ncl ude <QAppli cati on>

#i ncl ude <KDChart W dget >

#i ncl ude <KDChart Li neDi agr an»
#i ncl ude <KDChart Cart esi anAxi s>

usi ng namespace KDChart ;

We need to include KDChar t Li neDi agr amin order to be able to add the Axis as we
will see further on.

int main(int argc, char** argv) {
QApplication app(argc, argv);
W dget wi dget;
/1 our Wdget can be confi gured

89

/'l as any @ W dget

wi dget . resi ze(600, 600);

/] store the data and assign it

Qvect or< doubl e > vecO, vecl;

vecO << 5 << 1 << 3 << 4 << 1;

vecl << 3 << 6 << 2 << 4 << §;

vec2 << 0 << 7 << 1 << 2 << 1,

wi dget . set Dataset (0, vecO, "vecO");
wi dget . set Dataset (1, vecl, "vecl");
wi dget . set Dat aset (2, vec2, "vec2");

Note

We don't need to change the default chart type (Line Charts) by calling the
KDChart W dget : : set Type method.

Now let us create our axis, position them and set their titles:

Cartesi anAxi s *xAXi s new Cartesi anAxi s(wi dget.|ineDiagran());
Cartesi anAxi s *yAxis new Cartesi anAxis (w dget.lineDiagran());
XAxi s->set Position (CartesianAxis::Bottom);

yAxi s->setPosition (CartesianAxis::Left);

xAxi s->set Titl eText ("Abscissa bottom position");
yAXis->setTitleText ("Ordinate left position");

And add them to our diagram which will take the ownership:

wi dget . | i neDi agran() - >addAxi s(XAxis);
wi dget . | i neDi agran{() - >addAxi s(yAxis);

Finally we conclude our small example:

wi dget . show() ;

return app. exec();

See the screen-shot below to view The resulting chart displayed by the above code.

Figure5.1. A Simple Widget With Axis

90

Ordinate left position
°

=100 -

Abscissa bottom position

This example can be compiled and run from the following location of your KD Chart
installation exanpl es/ Axi s/ W dget , we recommend you to do so.

In the Tips section below we will present you a more elaborate example which uses

KDChar t Chart and where we are configuring our axis title text attributes. We also use
our own labels and their shortened version.

Tips

In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

Axis Example

In the following implementation we want to be able to:

» Add axes at different positions.
e Setthe axistitle and configure their text attributes.
» Useour own labels and their shortened versions.

e Configure our |abels text attributes.

91

In the example below we are using a KDChar t Chart class and also an home made
Tabl eModel for the convenience. It is derived from QAbst r act Tabl eMbdel .

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This alows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model data files.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the exanpl es/ t ool s directory of your KD Chart installation.

Let us concentrate on our diagram _with_ axis implementation for now and consult the
following files: other needed files like the ui, pro, grc ,CSV and main.cpp files can be
consulted from the exanpl es/ Axi s/ Chart directory of your installation.

/**

** Copyright (C) 2006 Kl arAal vdal ens Datakonsult AB. Al rights reserved.

* %

5 ** This file is part of the KD Chart library.

* %

** This file may be distributed and/or nodified under the terms of the

** GNU CGeneral Public License version 2 as published by the Free Software

** Foundation and appearing in the file LICENSE GPL included in the
10 ** packaging of this file.

* %

** |jcensees holding valid conmercial KD Chart |icenses may use this file in
** accordance with the KD Chart Commercial License Agreement provided with

** the Software.
15 * %

** This file is provided AS IS with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
** WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.

* %

** See http://ww. kdab. net/kdchart for
20 ** i nformati on about KDChart Commercial License Agreenents.

* %

** Contact info@dab.net if any conditions of this
** |icensing are not clear to you.

* %
25 **/

#i f ndef MAI NW NDOW H
#defi ne MAI NW NDOW H

30 #i ncl ude "ui _mai nwi ndow. h"
#i ncl ude <Tabl eMbdel . h>

namespace KDChart {
class Chart;
35 cl ass Li neDi agram
cl ass Mai nW ndow : public QN dget, private U ::MinW ndow
{
40 Q OBJECT

publi c:
Mai nW ndowm QW dget* parent = 0);

45

92

50

55

private:

b

KDChart:: Chart* mchart;
Tabl eModel m nodel ;
KDChart : : Li neDi agrant m.|ines;

#endi f /* MAI NW NDOW H */

In the above code we bring up the KDChart namespace as usual. As you can see we are
using a KDChartChart object (m_chart), a KDChartLineDiagram object (m_lines), and
our home made TableModel (m_mode!).

1

10

15

20

25

30

35

40

45

50

IR R R AR R EREEEEEEREREEEEEEEEEEEREREEEEREEEEEEEEEEEEEEEREEEEEEEE

* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

Copyright (C) 2006 Kl arAal vdal ens Dat akonsult AB. All rights reserved.
This file is part of the KD Chart library.

This file may be distributed and/or nodified under the terms of the
GNU General Public License version 2 as published by the Free Software
Foundati on and appearing in the file LICENSE. GPL included in the
packaging of this file.

Li censees holding valid commercial KD Chart |icenses may use this file in
accordance with the KD Chart Commercial License Agreerment provided with
the Software.

This file is provided AS IS with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.

See http://ww. kdab. net/ kdchart for
informati on about KDChart Commercial License Agreenents.

Contact info@dab.net if any conditions of this
licensing are not clear to you.

LSRR EEEEEEEEAEEEREEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEREEEEEEEEEEEEEEY]

#i ncl ude "mai nwi ndow. h"

#i ncl ude <KDChart Chart >
#i ncl ude <KDChart Li neDi agr an>
#i ncl ude <KDChart Text Attri butes>

usi ng nanespace KDChart;

Mai nNW ndow: : Mai nW ndow(QW dget* parent)

{

QN dget (parent)
setupU (this);

HBoxLayout * chartLayout = new HBoxLayout (chartFranme);
m chart = new Chart();

m chart - >set d obal Leadi ng(10, 10, 10, 10);
chartLayout - >addW dget (m chart);

hSBar - >set Vi si bl e(fal se);
vSBar - >set Vi si bl e(fal se);
m_nodel . | oadFronCSV(":/data");

/1 Set up the di agram
m | ines = new Li neDi agran();
m | i nes- >set Mbdel (&m nodel);

93

/] create and position axis
Cartesi anAxi s *topAxis = new Cartesi anAxi s(m_
55 Cartesi anAxis *left Axis = new CartesianAxis (m
Cartesi anAxis *right Axis = new CartesianAxis (m_ s);
Cartesi anAxi s *bottomAxis = new CartesianAxis (mlines);
t opAxi s->set Position (CartesianAxis::Top);
| ef t AXi s->setPosition (CartesianAxis::Left);
60 ri ght Axi s->setPosition (CartesianAxis::Right);
bot t omAxi s->set Position (Cartesi anAxis::Bottom);

/] set axis titles

t opAxi s->set Titl eText ("Abscissa color configured top position");
65 left Axi s->setTitleText ("left Ordinate: fonts configured");

right Axi s->setTitleText ("right Ordinate: default settings");

bott omAxi s->set Titl eText ("Abscissa Botton);

/1 configure titles text attributes

70 Text Attri butes taTop (topAX| s->titleTextAttributes ());
taTop. setPen(QPen(Q::red));
t OpAXi s- >setT|t|eTextAttr|butes (taTop);

TextAttributes taLeft (leftAxis->titleTextAttributes ());
75 talLeft.setRotation(180);

Measure nme(taleft.fontSize());

me. set Val ue(me.value() * 0.8);

talLeft.setFont Si ze(ne);

/1 Set the following to 1, to hide the left axis title

80 //]c - no matter if atitle text is set or not
#i

o

talLeft.setVisible(false);
#endi f
left Axi s->setTitl eTextAttributes (taLeft);

85
Text Attributes taBottom (bottomAxis->titleTextAttributes ());
taBottom setPen(QPen(Q::blue));
bottomAxi s->set Titl eTextAttri butes (taBottom);

90 /1 configure labels text attributes

Text Attri butes talLabel s(topAxis->textAttributes());
talLabel s. setPen(QPen(Q::darkGeen));
talLabel s. set Rotati on(90);
t OpAxi s->set Text Attri butes(talLabels);
95 | ef t Axi s->set Text Attributes(talLabels);
bot t omAxi s- >set Text Attri butes(talLabels);

/1l Set the following to O, to see the default Abscissa |abels
100 // (== X headers, as read fromthe data file)
#i

/'l configure |abels and their shortened versions

@St ringLi st daysO Week

daysOf Week << "M O N DAY << Tuesday" << "Wednesday"
105 << "Thursday" << "Friday" ;

t opAxi s- >set Label s(daysOf Week) ;

@St ringLi st shortDays;

shortDays << "MON' << "Tue" << "Wed"
110 << "Thu" << "Fri";

t opAxi s- >set Short Label s(short Days);

@StringlLi st bottonlLabel s;
bottonlLabel s << "Team A" << "Team B" << "Team C';
115 bot t omAxi s- >set Label s(bottomnLabels);

@Stringli st shortBottonlabel s;

shortBottonlLabel s << "A" << "B";

bot t omAxi s- >set Short Label s(shortBottonlabels);
120 #endi f

94

/1 add axis
m | i nes- >addAxi s(topAxis);
m | i nes->addAxi s(leftAxis);
125 m | i nes->addAxi s(rightAxis);
m | i nes- >addAxi s(bottomAxis);
/1 assign diagramto chart view

) m chart - >coor di nat ePl ane() - >repl aceDi agranm(m.lines);

130

First of all we are adding our chart to the layout as for any other Qt widget. Load the
datato be display into our model, and assign the model to our diagram.

HBoxLayout * chart Layout = new QHBoxLayout(chartFrame);
m chart = new Chart();

chart Layout - >addeget(m chart);

hSBar - >set Vi si bl e(fal se);

vSBar - >set Vi si bl e(false);

m _nodel . | oadFronCSV(":/data");
/1 Set up the di agram

m |ines = new LineDi agran();
m_| i nes- >set Mbdel (&m nodel);

We want to display three axis, respectively positionned at the top, left and bottom side
of our diagram. Thisis straight forward:

Car t esi anAxi s *topAxis = new CartesianAxis(mlines);
CartesianAxis *left Axis = new CartesianAxis (mlines);
Cartesi anAxis *bottomAxis = new CartesianAxis (" mlines);

t opAxi s->set Position (CartesianAxis::Top);
| eft Axi s->setPosition (CartesianAxis::Left);
bot t omAxi s->set Position (Cartesi anAxis::Bottom);

In the code above we are declaring our axis and make use of
KDChar t Car t esi anAxi s: : set Posi ti on() to givetheir location.

Let us now define the title text for each of those axis:

ibbei s->setTitl eText (' AbSCI ssa col or configured top position");
|l ef t Axi s->setTitleText ("Ordinate font configured");
bottomAxi s->set Titl eText ("Abscissa Bottonl');

setTitleText() and setTitleTextAttributes() are implemented in
KDChart Cart esi anAxi s, we recommend you to consult its interface (see

95

KDChar t Cart esi anAxi s. h

In this example and to demonstrate the text configuration for the title and the labels we
want to have a different configuration for each of our tilte axis and also for our labels.
The process is the same as for configuring any type of attributes, as follow:

Create an attribute object, configure it and assign it.

/1 configure titles text attributes

Text Attributes taTop (topAxis->titleTextAttributes ());
/1 color configuration

taTop.setPen(QPen(Qt::red));

/] assign to the axis

topAxi s->set Titl eText Attri butes (taTop);

Text Attributes taLeft (leftAxis->titleTextAttributes ());
/1 Font configuration

Measure nme(talLeft.fontSi ze());

me. set Val ue(nme.value() * 1.5);

talLeft.setFont Si ze(ne);

lef t Axi s->set Tit| eText Attri but es (taLeft);

Text Attributes taBottom (bottomAxis->titleTextAttributes ());
taBottom setPen(QPen(Q::blue));
bottomAxi s->set Titl eTextAttri butes (taBottom);

/'l configure labels text attributes

Text Attri butes talLabel s;

talLabel s. setPen(QPen(Q::darkGeen));
t OpAxi s->set Text Attri butes(talLabels);

| ef t Axi s->set Text Attributes(talLabels);
bot t omAxi s- >set Text Attri butes(talLabels);

We want our top and bottom axis to display different types of labels as well as to make
sure those labels will be shortened in case the normal labels are too long (see
setShortLabels()).

/'l configure labels and their shortened versions

@St ri nglLi st daysO‘ Week;

daysO‘ Week << anday << "Tuesday" << "Wednesday"
'Thur sday" << "Friday" ;

topAX| s->set Label s(daysOf Week);

@St ringli st short Days;

shortDays << an << "Tue" << "Wed"
"Thu" << "Fri"

topAX| s->set Short Label s(shortDays);

@StringlLi st bottonlabel s;

bottonliabel s << "Day 1" << "Day 2" << "Day 3"
<< "Day 4" << "Day 5";

bot t omAxi s- >set Label s(bottomLabels);

@St ringlLi st short BottonLabeI S;

shortBottom_abeI S << "D1" << "D2" << "D3"

<< "D4" << "D5"

bot t omAxi s- >set Shor t Label s(shortBottonlLabels);

96

Note

Labels specified via setLabels take precedence: if a non-empty list is
passed, KD Chart will use these strings as axis labels, instead of
calculating them.

Finally the last step i to assign our axis to the diagram and the diagram to our chart
view.

nes- >addAxi s(topAxis);
nes->addAxi s(leftAxis);

/'l add axis
i
i
i nes->addAxi s(bottomAxis);

m |
m |
m |

// assign diagramto chart view
m chart - >coor di nat ePl ane() - >repl aceDi agram(m.lines);

This example is available to compile and run from the exanpl es/ Axi s/ Chart
directory in your KD Chart installation. We recommend you to run it. The widget
displayed by the above code is shown in the figure bel ow.

Figure5.2. Axiswith configured Labelsand Titles

F Axes
G HE)
Abscissa color configured top position
Mon Tue Wed Thu Fri
|
I
=]
2
=
<] 2 -
]
z =
= = =
2 - o
2 S
E
o - : : | : :
Day 1 Day 2 Day 3 Day 4 Day 5
Abscissa Bottom

Severa ready to run examples related to axis are available at the following location
exanpl es/ Axi s, we recommend you to run them all and consult their implementation.

What's next

97

Legends are also an important element. In the next section we will describe how to add
and configure your chart legend.

98

Chapter 6. Legends

Legends can be drawn for al kind of diagrams and are drawn at the chart level (in
relation to diagram level). We can have more than one legend per chart and add it to our
chart or our widget view by using respectively KDChart Chart:: addLegend() or
KDChar t W dget : : addLegend()

Note

Legend is different from all other classes ofd KD Chart, since it can be
displayed outside of the Chart's area. If we want to, we can embedd the
legend into your own widget, or into another part of a bigger grid, into
which we might have inserted the Chart.

On the other hand, please note that we need to (MUST) cdl
KDChart Chart: : addLegend() to get our legend positioned at the
correct position in our chart in case we want to display the legend inside of
the chart which is probably true for most cases.

Let us go through the main configuration features offered by KDChart Legend. Of
course we also recommend you to consult its interface see KDChar t Legend. h as well
asthe interfaces for KDChar t Char t and KDChar t W dget to have a complete idea over
how to handle legends and what are the configurations parameters available.

How to configure

In order to add a legend to our chat we need to use the
KDChar t Chart: : AddLegend() method. The chart takes ownership of the legend and
will take care of removing it by itself. The KDChar t Chart method above and the ones
discussed in the paragraphs are similar for the KDChar t W dget class. In order to make
the following description simpler we will only mention KDChar t Char t in the following

paragraphs.
Tip
You may also wish to use KDChart Chart repl aceLegend(Legend

newLegend , Legend ol dLegend) which is also available for the
convenience:

The old legend will be deleted automatically. If its parameter is omitted,
the very first legend will be replaced. In case, there was no legend yet, the
new legend will just be added.

If you want to re-use the old legend, call takel egend and addL egend, instead of using
replacelegend.

99

Note

KDChart Chart: : t akeLegend() Removes the legend from the chart
without deleting it. The chart no longer owns the legend, it is the caller's
responsibility to delete the legend.

The main configurations elements for KDChar t Legend are:

» ReferenceArea Specifies or retrieve the reference area for font size of title text and
for font size of the item texts.

» Diagrams. Add, retrieve, replace or remove diagrams associated to the legends.
» Position, Alignment and Orientation are of course configurable.
» Show Lines: Paint lines between the different items of alegend.

» Title, Markers and Text attributes can be set, as well as colors and spacing.

Note

The KDChartPosition class, defines positions, using compass
terminologie. Using this class you can specify one of nine pre-defined,
logical points, in asimilar way, as you would use a compass to navigate
on a map. We recommend you to consult its interface to learn more about
it (KDChar t Posi ti on. h).

Please consult the setters and getters methods available in the KDChart Legend
interface. See KDChar t Legend. h.

Legend Sample

We will now describe those features a more concrete way by looking at the following
sample code based on the Si npl e W dget example we have been demonstrating above
Chapter 3 - Two \Ways - Wdget Exanple. Through the following code we
demonstrate how to add and position a Legend to your chart Widget using a
KDChartWidget.

First include the appropriate headers and bring in the "K DChart namespace:

#i ncl ude <QAppli cation>

#i ncl ude <KDChart W dget >

#i ncl ude <KDChart Bar Di agr an»
#i ncl ude <KDChart Positi on>

usi ng nanmespace KDChart ;

100

In this sample code we want to display a bar chart and need to include our
KDChar t Bar Di agr am class. In order to be able to give a location (position) to our
legend in the widget view we also include KDChar t Posi ti on.

int main(int argc, char** argv) {
QApplication app(argc, argv);

W dget widget;
wi dget . re5|ze(600, 600);

Qvect or< doubl e > vecO, vecl, vec2;

vecO << -5 << -4 << -3 << -2 << -1<< 0
<< 1 << 2 << 3 << 4 << 5;

vecl << 25 << 16 << 9 << 4 << 1 << 0
<< 1 << 4 << 9 << 16 << 25;

vec2 << -125 << -64 << -27 << -8 << -1 << 0
<< 1 << 8 << 27 << 64 << 125;

wi dget . set Dataset (0, vecO, "vO0");
wi dget . set Dataset (1, vecl, "v1");
wi dget . set Dat aset (2, vec2, "v2");
wi dget . set Type(W dget::Bar);

Note

We need to change the default chart type (Line Charts) by caling the
KDChar t W dget : : set Type method in order to display a bar type
diagram.

Now let us add our legend, set its position and orientation, its title and dataset |abels
text:

Wi dget addLegend(Posi tion:: North);

wi dget. firstLegend()->set Oientati on(;i Horizontal);
wi dget. firstLegend()->setTitleText(' "Bar s Legend");

wi dget . firstLegend()->setText(O, "Vector 1");

wi dget . firstLegend()->setText(1, "Vector 2");

wi dget . firstLegend()->setText(2, "Vector 3");

wi dget . firstLegend()->set Show.i nes(true);

The interesting point here is how we call KDChart W dget : : firstl egend() togeta
pointer to to our legend object and be able to set up and configure it. We will see further
on in the next code example (see - Section Tips - how to configure the elements of a
legend (e.g Title text, markers, etc....).

Finally we conclude our small application by runnig the usual lines of code.

wi dget . show() ;

101

return app. exec();

See the screen-shot below to view The resulting chart displayed by the above code.

Figure6.1. A Widget With a ssmply configured L egend
=T [legendS -
(O ‘CegendSimpler W)

| Bars Legend

|.\l'ecmr1 | Vecmr2|.Vecmr3

L

Tr

This example can be compiled and run from the following location of your KD Chart
installation exanpl es/ Legends/ LegendSi npl e, we recommend you to do so.

In the Tips section below we will present you a more elaborate example which uses
KDChar t Chart and where we are setting up our legend elements (title, texts, markers,
etc...).

Tips

In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

Before we go through this example, let us study a very simple chart implementation
with itslegend by looking at the following line of codes which we will comment.

102

First and as we always do, we set up a model, declare our diagram, and assign the model
to it and the diagram to our chart after having included the relevant header files.

#i ncl ude <Qx Cui >

#i ncl ude <KDChart Chart >

#i ncl ude <KDChart Bar Di agr an»>

#i ncl ude <KDChart Legend>

#i ncl ude <KDChart Position>

#i ncl ude <KDChart BackgroundAttri but es>
#i ncl ude <KDChart FraneAttri butes>

usi ng nanmespace KDChart;

class ChartWdget : public QN dget {

Q OBJECT

public:

{explicit Chart W dget (QN dget * parent=0) : QA dget (parent)
m nodel . i nsert Rows(0, 2, Qwbdel | ndex());
m nodel . insertColums(0, 3, QWdellndex());
for (int row= 0; row < 3; ++row) {
for (int colum = 0; colum < 3; ++col um)

Qvbdel | ndex i ndex = m nodel . i ndex(row, columm, Qvbdel | ndex());
m nodel . set Dat a(i ndex, Qvariant(row+l * colum));

}

Bar Di agr ant di agram = new Bar Di agr am
di agr am >set Model (&m nodel) ;

m chart. coordi nat ePl ane() - >r epl aceDi agr an(di agram ;

We will set the legend position as well as its Background and Frame attributes and
includes those header files on this purpose. That will allow us to make use of the
methods available in those classes.

We will now add alegend and set it up (positions, orientations, etc...):

/1l Add a |legend and set it up

Legend* | egend = new Legend(diagram &mchart);
| egend- >set Posi ti on(Position::NorthEast);

| egend- >set Al i gnment (Q@ :: AlignCenter);

| egend- >set ShowLi nes(fal se);

| egend->set Titl eText(tr("Bars"));

| egend->setOrientation(Q::Vertical);

m chart. addLegend(|egend);

The code above handle the attributes specific to alegend, the setters and getters for the
methods we have been used here are implemented in the KDChart Legend class. We
recommend you to consult itsinterface. See KDChar t Legend. h.

Set the Legend marker attributes. We want each dataset's marker to have its own marker
style.

/1 Configure the itens markers
Mar ker Attributes | ng;
| ma. set Marker Styl e(Marker Attri butes:: Marker Di amond) ;

103

| egend- >set MarkerAttributes(0, I|ma);
| ma. set Marker Styl e(MarkerAttributes:: MarkerCircle);
| egend- >set MarkerAttributes(1, Ilma);

Markers are assigned per dataset as you can see above. You can learn more about the
marker styles and the methods available to configure markers in the
Mar ker At t ri but es classinterface. See KDChar t Mar ker At tri but es. h.

Let us now configure our legend's items text:

/1 Configure |abels for Legend' s itens
| egend- >set Text(O, "Series 1");
| egend- >set Text(1, "Series 2");
| egend- >set Text(2, "Series 3");

Each dataset can be assigned its own text. We want to change their pen color for
demonstrating this feature and also to make our legend nicer. We proceed as follow and
configure their text attributes.

Text Attributes |ta;
Ita.setPen(QPen(Q::darkGay));
| egend- >set Text Attributes(Ita);

Text attributes configuration and assignment is done as for all other types of attribute.
Create a text attribute object, configure it and assign it. In this case we assign it to our
legend by using its method KDChar t Legend: : set Text Attri but es().

Tip

If we wish to paint a surrounding line round our legend markers we just
need to configure a pen and assign it to our legend by calling
KDChart Legend: : set Pen(). See the following code sample that
demonstrate that.

/1 Configure a pen to surround

/] the markers with a border

QPen nar ker Pen;

mar ker Pen. setCol or(Q::darkGay);

mar ker Pen. setWdth(2);

/'l Pending M chel use datasetCount() here as soon
/l as it is fixed

for (uint i =0; i < |egend->datasetCount(); i++)
| egend- >set Pen(i, markerPen);
Note

Mind the call to KDChart Legend: : dat aset Count () which alow you

104

to retrieve the number of dataset and simply loop through it.

We want to make our legend more readable by setting a white background inside its
frame.

/1 Add a background to your |egend
BackgroundAttri butes ba;

ba.setBrush(Q::white);
ba.setVisible(true);

| egend- >set BackgroundAttri butes(ba);

As for all attributes settings the code is straight forward, just create the attribute object,
configure it and assign it. We recommend you to have a look at the
KDChart BackgroundAttri but es interface. See
KDChar t Backgr oundAttri butes. h

Let us now configure our legend's frame:

FrameAttributes fa;

fa.setPen(markerPen);
fa.setPadding(5);

fa.setVisible(true);

| egend- >set FrameAttributes(fa);

Same procedure as above. Please note the set Vi si bl e() method which is necessary
as the default value hide those attributes.

Finally we need to conclude our small application.

QvBoxLayout* | = new QvBoxLayout (this);
| - >addW dget (&m chart);
set Layout (1) ;

private:

Chart mchart;

@St andar dI t enivbdel m nodel ;
s

int main(int argc, char** argv) {
QApplication app(argc, argv);

Chart W dget w,
w. show() ;

return app. exec();

}

#i ncl ude "mai n. noc"

See the screen-shot below to view The resulting chart displayed by the above code.

105

Figure6.2. A Chart with configured L egend

K

We recommend you to compile and run the above example, it is available at the
following location: exanpl es/ Legends/ LegendPar aneters .

Legend Example

In the following implementation we want to be able to:

» Add, edit or remove Legends in/from our chart view.

» Configureits position, and a few attributes.

e SetitsTitle

e All of the above operations should be available to the user from the GUI and
performed dinamically.

In the example below we are using a KDChar t Chart class and also an home made

Tabl eModel for the convenience. It is derived from QAbst r act Tabl eModel .

TableModel uses a simple rectangular vector of vectors to represent a data table that can

be displayed in regular Qt Interview views. Additionally, it provides a method to load

CSV files exported by OpenOffice Calc in the default configuration. This alows to

prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model datafiles.

106

We recommend you to consult the "TableModel" interface and implementation files
which are located in the exanpl es/ t ool s directory of your KD Chart installation.

Let us concentrate on our diagram _with_ axis implementation for now and consult the
following files: other needed files like the ui, pro, grc ,CSV and main.cpp files can be
consulted from the exanpl es/ Legends/ LegendAdvanced directory of your
installation.

10

15

20

25

30

35

40

45

50

55

/**

* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

Copyright (C) 2006 Kl arAal vdal ens Datakonsult AB. Al rights reserved.
This file is part of the KD Chart library.

This file may be distributed and/or nodified under the terms of the
G\U General Public License version 2 as published by the Free Software
Foundation and appearing in the file LICENSE. GPL included in the
packagi ng of this file.

Li censees hol ding valid commercial KD Chart |icenses may use this file in
accordance with the KD Chart Conmercial License Agreenent provided with
the Sof tware.

This file is provided AS | S with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE.

See http://ww. kdab. net/ kdchart for
i nformati on about KDChart Commercial License Agreenents.

Contact info@dab.net if any conditions of this
licensing are not clear to you.

**/

#i f ndef MAI NW NDOW H
#def i ne MAI NW NDOW H

#i ncl ude <QDi al og>
#i ncl ude <Qvap>

#i ncl ude "ui _mai nwi ndow. h"
#i ncl ude "derivedaddl egenddi al og. h"
#i ncl ude <Tabl eMobdel . h>

namespace KDChart {

}

class Chart;
cl ass Li neDi agram

cl ass Mai nW ndow : public QN dget, private U ::MinW ndow

Q OBJECT

publi c:

Mai nW ndowm QW dget* parent = 0);

private slots:

voi d on_addLegendPB_cl i cked();

voi d on_editLegendPB_clicked();

voi d on_renovelLegendPB_cl i cked();

voi d on_| egendsTV_i t enBel ecti onChanged() ;

private:

voi d i nitAddLegendDi al og(DerivedAddLegendD al og& conf,
Q::Aignnment alignnent) const;

KDChart:: Chart* mchart;

107

60

Tabl eModel m nodel ;
KDChart : : Li neDi agrant m | i nes;
Qvap<@:: Alignment, QString> alignment Map;

5
#endi f /* MAI NW NDOWH */

In the above code we bring up the KDChart namespace as usual. As you can see we are
using a KDChartChart object (m_chart), a KDChartLineDiagram object (m_lines), and
our home made TableModel (m_modd!).

1

10

15

20

25

30

35

40

45

50

IR R R AR R SRR R R R R R R R R R R R

* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

Copyright (C) 2006 Kl arAal vdal ens Dat akonsult AB. All rights reserved.
This file is part of the KD Chart library.

This file may be distributed and/or nodified under the terms of the
GNU General Public License version 2 as published by the Free Software
Foundation and appearing in the file LICENSE. GPL included in the
packagi ng of this file.

Li censees hol ding valid commercial KD Chart |icenses nay use this file in
accordance with the KD Chart Conmercial License Agreenent provided with
the Software.

This file is provided AS IS with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.

See http://ww. kdab. net/ kdchart for
i nformati on about KDChart Conmercial License Agreenents.

Contact info@dab.net if any conditions of this
licensing are not clear to you.

LR R EEEEEEEE AR EEEE R EEEEEEEEEEE SRR R LRy

#i ncl ude "mai nwi ndow. h"

#i ncl ude <KDChart Chart >

#i ncl ude <KDChart Legend>

#i ncl ude <KDChart Position>

#i ncl ude <KDChart Li neDi agr an»

#i ncl ude <KDChart Text Attri butes>
#i ncl ude <QConboBox>

#i ncl ude <QLi neEdi t>

class Legendltem: public QIreeWdgetltem

{
publi c:

Legendltem KDChart::Legend* |egend, QIreeW dget* parent)
QlreeWdgetlten(parent), mlegend(|legend) {}

KDChart:: Legend* | egend() const { return mlegend; }

private:

}s

KDChart :: Legend* m | egend;

Mai nW ndow. : Mai nW ndow(QW dget* parent)

QN dget (parent)

108

55

60

65

70

75

80

85

90

95

100

105

110

115

120

setupUi (this);

HBoxLayout * chart Layout = new QHBoxLayout(chartFrame);
m chart = new KDChart:: Chart();
chart Layout - >addW dget (m chart);

m _nodel . | oadFronCSV(":/data");

Il Set up t he di agram

m | ines = new KDChart::LinebD agram();

m | i nes- >set Model (&m_ model)

m _chart - >coor di nat ePl ane() - >r epl aceDi agran(m|ines);

QPen pen = QPen(mlines->pen(0).color(), 2);
pen.set Styl e(Q::DashLine);

m | i nes->set Pen(0, pen);

pen = QPen(mlines->pen(2).color(), 2);
pen.set Styl e(Q:: DashDot Dot Li ne);

m | i nes->set Pen(2, pen);

/1 Add at |east one legend for starters

KDChart:: Legend* | egend = new KDChart::Legend(mlines, mchart);

| egend- >set Posi ti on(KDChart::Position::North);
| egend->set Al ignnment (Q::AlignCenter);

| egend- >set ShowLi nes(fal se);

| egend->set Titl eText(tr("Legend"));

| egend->setOrientation(Q::Vertical);

m chart - >addLegend(|egend);

| egend- >show() ;

Legendl tent newltem = new Legendl tenm(| egend, |egendsTV);
))i

new tem >set Text(0, tr(' Nort

new tem >set Text(1, tr("))

new tem >set Text(2, tr(" Legend“))

newl tem >set Text (3, tr("Vertical"));

newl tem >set Text (4, tr("Center"));

new tem >set Text(5, tr("MarkersOnly"));

alignmentMap[Q::AignTop | Q::AignLeft] =tr("Top + Left");

al i gnment Map[Q::AlignTop | Q::AlignHCenter] = tr("Top + HCenter");
al i gnment Map[Q::AignTop | Q::AignRi ght] =tr("Top + Right");
alignment Map[Q::AignVCenter | Q::AignRight] = tr("VCenter + Right");
alignmentMap[Q::AlignBottom | Q::AignRi ght] = tr("Bottom+ Right");
alignmentMap[Q::AlignBottom | Q::AignHCenter] = tr("Bottom + HCenter");
alignmentMap[Q::AignBottom | Q::AignLeft] = tr("Bottom+ Left");
alignmentMap[Q::AignVCenter | Q::AignLeft] = tr("VCenter + Left");
al i gnment Map[Q::AlignCenter] =tr("Center");

m chart - >updat e

—

)

voi d Mai nW ndow: : i ni t AddLegendDi al og(Der| vedAddLegenle al og& conf,
Q:

Al'i gnnent al i gnnent) const
conf.titl eText ED->set Focus();

const QStringList |abels = KDChart:: Position::printabl eNames();
const QLi st<ByteArray> names = KDChart:: Position::nanes();

for (int i =0, end = gMn(|labels.size(), nanes.size()) ; i !=end ;

conf. positionCO >addlten(|abels[i], names[i]);

qva <@::Alignnment, QString>: :const iterator it = alignmentMap. constBegin();

whi | e (|t I'= al i gnnent Map. const End()) {
conf. alignnent CO->addltenm(it.value());
+Hit;

const int idx = conf.alignmentCO >findText(alignmentMap[alignnment]);

109

++i

)

if(idx >-1)
conf. al i gnnent CO- >set Current | ndex(idx);
125 }

voi d Mai nW ndow: : on_addLegendPB_cl i cked()

Deri vedAddLegendDi al og conf;
130 i ni t AddLegendDi al og(conf, Q::AlignCenter);
if(conf.exec() == QD al og:: Accepted)
KDChart:: Legend* | egend = new KDChart::Legend(mlines, mchart);
m chart - >addLegend(| egend);
| egend- >set Posi ti on(
135 KDChart: : Position::fromNane(conf. positionCO >itenData(conf.positionCO >
/'l get the alignnment
Q::Aignnment alignment = Q::AlignCenter;
const QString selectedAlignnment(conf.alignnentCO >currentText());

Qvap<@:: Alignment, QString>::const_iterator i = alignment Map. constBegin();
140 while (i !'= alignmentMap.constEnd()) {
if (i.value() == selectedAlignnent){
alignment = i.key();
) br eak;
145 ++i ;

| egend- >set Al'i gnnment (al i gnnment) ;
| egend- >set ShowLi nes(conf. showLi nesCB- >i sChecked());
| egend->set Titl eText(conf.titleTextED >text());
150 | egend->setOrientation((conf.orientati onCO >currentlndex() == 0) ? Q:: Ver

switch(conf.styl eCO >currentlndex())

case 0:
155 | egend- >set LegendStyl e(KDChart:: Legend:: MarkersOnly);
br eak;
case 1:
| egend- >set LegendStyl e(KDChart::Legend::LinesOnly);
br eak;
160 case 2:
| egend- >set LegendSt yl e(KDChart: : Legend: : Mar ker sAndLi nes);
br eak;
defaul t:
| egend- >set LegendStyl e(KDChart::Legend:: MarkersOnly);
165) br eak;

Legendl tent newlitem = new Legendlten{ |egend, |egendsTV);

new t em >set Text (0, conf.positionCO >currentText());

170 new t em >set Text (1, conf.showLi nesCB->i sChecked() ? tr("yes") : tr("no"));
new tem >set Text(2, conf.titleTextED>text());
newl tem >set Text (3, conf.orientati onCO >currentText());
new t em >set Text (4, sel ectedAlignnment);
new t em >set Text (5, conf.styleCO >currentText());

175) m chart - >updat e();

}

180 voi d Mai nW ndow: : on_edi t LegendPB_cl i cked()
{

if (legendsTV->selectedltens().size() == 0) return;
Legendltent item = static_cast<Legendltent>(| egendsTV->selectedltens().first())
KDChart:: Legend* | egend = item >l egend();
185 Deri vedAddLegendDi al og conf;
i ni t AddLegendDi al og(conf, |egend->alignment());
conf . showLi nesCB- >set Checked(| egend- >showLi nes());
conf.titleText ED->set Text(| egend->titleText());
190 /Il I'n this exanple we are using | egend position nanes, that match
/'l exactly the nanes in KDChart::Legend:: LegendPosition,
/!l so we can use a shortcut here, to set the respective nane in

110

195

200

205

210

215

220

225

230

235

240

245

250

255

260

/1 the dialog's list, and we need no error checking for findText():
conf. posi ti onCO >set Current | ndex(

conf. positionCO >findText (| egend->position().printabl el\lane()))
conf.orientati onCO >set Current | ndex((legend->orientation()==Q::Verti cal)70 1);
conf.styl eCO >set Current | ndex(| egend->| egendStyle());

if(conf.exec() == QD al og:: Accepted) {
/1l egend- >set Positi on((KDChart:: Legend:: LegendPosition)conf. positionCO >curr
| egend- >set Posi ti on(
KDChart:: Position:: fromNane(conf. positionCO >itenData(conf.positionCO >
/1 get the alignment
Q::Alignnent alignment = Q::AlignCenter,;
const QSt ring sel ectedAli gnrrent(conf. al i gnment CO- >current Text());
QVap<Q@:: Alignment, QString>::const_iterator i = alignment Map. const Begi n();

while (i != alignment Map. const End()) {
if (i.value() == selectedAlignnent){
alignment = i.key();
br eak;
++i ;

| egend- >set Al i gnnment (al i gnnment) ;

| egend- >set ShowLi nes(conf. showlLi nesCB- >i sChecked());

| egend->set Titl eText(conf.titleTextED >text());

| egend- >set Orientation((conf.orientati onCO >currentlndex() == 0) ? Q::Ver

switch(conf.styl eCO >currentlndex())

case O:
| egend- >set LegendStyl e(KDChart:: Legend:: MarkersOnly);
br eak;
case 1:
| egend- >set LegendStyl e(KDChart:: Legend:: Li nesOnly);
br eak;
case 2:
IbegeEd- >set LegendSt yl e(KDChart: : Legend: : Mar ker sAndLi nes);
reak;
defaul t:
IbegeEd- >set LegendStyl e(KDChart:: Legend:: MarkersOnly);
reak;

item >set Text(0, conf.positionCO >currentText());

item >set Text (1, conf.showli nesCB->i sChecked() ? tr("yes") : tr("no"));
item >setText(2, conf.titleTextED >text());

item >set Text (3, conf.orientationCO >currentText());

item >set Text (4, selectedAlignnent);

item >set Text(5, conf.styleCO >currentText());

m chart - >updat e(

);

-

voi d Mai nW ndow: : on_r enoveLegendPB_cl i cked()

#f 0

#el se

if (legendsTV->sel ectedltens().size() == 0) return;

Qi st<QlreeWdgetltent> itens = | egendsTV- >sel ectedl tens();

for(QList<QlreeWdgetltenr>::const_iterator it = itens.begin();
it !'=items.end(); ++it)

{
KDChart:: Legend* | egend = static_cast<Legendltent>((*it))->legend();
/1l Note: Despite it being owned by the Chart, you *can* just delete
11 the legend: KD Chart will notice that and adjust its |ayout
del ete | egend;
/1 ... but the correct way is to first take it, so the Chart is no | onger own
m chart - >t akeLegend(| egend);
/1 ... and then delete it:

111

del ete | egend;
#endi f
265 delete (*it);

m chart - >updat e()
270 voi d Mai nW ndow: : on_I| egendsTV_i t enfSel ect i onChanged()

removelLegendPB- >set Enabl ed(| egendsTV->sel ectedl tens().count() > 0)
removelLegendPB- >set Enabl ed(| egendsTV->sel ectedltens().count() == 1)

275

See the screen-shot below to view The resulting chart displayed by the above code.

Figure 6.3. Legend advanced example

Iv. o = K}
~Legends
Position | Show Lines | Title
----- East no East
----- South no South
West yes West
L North yes MNorth
0 a0
Add.. || Edt. |[Remove |

This ready to run example is available at the following location exanpl es/
Legends/ LegendAdvanced of your KD Chart installation, we recommend you to
study its code, compile and run it.

What's next

You can aso add headers and/or footers to your chart to make it more understandable.
In the next section we will go through the several features and configuration
possibilities availablein KD Chart 2.0 about "Headers and Footers".

112

Chapter 7. Header and Footers

Headers and Footers can be added and configured in several ways. That will be the
subject of this section where we will go through the main features and methods
available. Of course we recommend you to consult the KDChar t Header Foot er class
interfface to learn more about those features and methods. See
KDChar t Header Foot er . h

How to configure

In order to add a Header or a Footer to our chart we need to use the
KDChar t Chart: : AddHeader Foot er (Header Footer* hf) method. The chart
takes ownership and will take care of removing it by itself. The KDChar t Chart method
above and the ones discussed in the next paragraphs of this section are similar for the
KDChar t W dget class. In order to make this description simpler we will only mention
KDChart Chart there.

Tip

You may also wish to use KDChart Chart repl aceHeader Foot er (
Header Footer newHf, HeaderFooter ol dH) which is aso
available for the convenience:

The new header or footer to be used instead of the old one must not be
zero, or the method will do nothing. The second parameter of this method
is header or footer to be removed by the new one. This header or footer
will be deleted automatically. If the parameter is omitted, the very first
header or footer will be replaced. In case, there was no header and no
footer yet, the new header or footer will just be added.

If you want to reuse the old header or footer, call takeHeaderFooter and
addHeaderFooter, instead of using replaceHeaderFooter.

Note

KDChart Chart: : t akeHeader Foot er () Removes the header or footer
from the chart without deleting it. The chart no longer owns the header or
footer, it isthe caller's responsibility to delete it.

The main configurations elements for KDChar t Header Foot er are:

» Type: Can be Header or Footer.

» Position: Allow the user to define or retrieve the Header or footer position.

113

e Text and Text attributes can of course also be configured as we will see in the
following examples.

Note

The KDChartPosition class, defines positions, using compass
terminologie. Using this class you can specify one of nine pre-defined,
logical points, in a similar way, as you would use a compass to navigate
on a map. We recommend you to consult its interface to learn more about
it (KDChar t Posi ti on. h).

Headers and Footers code Sample

We will now describe those features a more concrete way by looking at the following
sample code based on the Si npl e W dget example we have been demonstrating above
Chapter 3 - Two \Ways - Wdget Exanple. Through the following code we
demonstrate how to add and position a header and a footer to a chart Widget using a
KDChartWidget.

First include the appropriate headers and bring in the "KDChart namespace”:

#i ncl ude <QAppli cation>

#i ncl ude <KDChart W dget >

#i ncl ude <KDChar t Bar Di agr an»
#i ncl ude <KDChart Positi on>

usi ng namespace KDChart ;

In this sample code we want to display a bar chart and need to include our
KDChar t Bar Di agr am class. In order to be able to give a location (position) to our
header and our footer in the widget view we aso include KDChar t Posi ti on.

int main(int argc, char** argv) {
QApplication app(argc, argv);

W dget widget;
wi dget . resi ze(600, 600);

Qvect or< doubl e > vecO, vecl, vec2;

vecO << -5 << -4 << -3 < -2 < -1 << 0
<<1<<2<<3<<4<<5;

vecl << 25 << 16 << 9 << 4 << 1 << 0
<< 1 << 4 << 9 << 16 << 25;

vec2 << -125 << -64 << -27 << -8 << -1 << 0
<< 1 << 8 << 27 << 64 << 125;

wi dget . set Dat aset (0, vecO, "vO0");
wi dget . set Dataset (1, vecl, "v1");
wi dget . set Dat aset (2, vec2, "v2");
wi dget . set Type(W dget::Bar);

114

Note
We need to change the default chart type (Line Charts) by caling the

KDChar t W dget : : set Type method in order to display a bar type
diagram.

Now let us add our header and footer, set its position and its text.

wi dget . addHeader Footer ("A default Header - North",

Header Foot er: : Header, Position::North);
wi dget . addHeader Footer ("A default Footer - South",

Header Foot er : : Footer, Position::South);

As you can see the code above is straight forward and we just need to call
KDChar t W dget : : addHeader Foot er () passing the text, type and position we want
toassigntoit.

Finally we conclude our small application:

wi dget . show() ;

return app. exec();

See the screen-shot below to view The resulting chart displayed by the above code.

Figure7.1. A Widget With a Header and a Footer

115

A default Header - North

A default Footer - South

This example can be compiled and run from the following location of your KD Chart
instalation exanpl es/ Header sFoot er s/ Header sFoot er sSi npl e, we recommend
you to do so.

In the Tips section below we will present you a more elaborate example which uses
KDChart Chart and where we are setting up our headers and footers (texts,
background, frame etc...).

Tips

In this section we want to give you some example about how to use some interesting
features offered by the KD Chart 2.0 API. We will study the code and display a screen-
shot showing the resulting widget.

Before we go through this example, let us study a very simple chart implementation
with a configured header by looking at the following line of codes which we will
comment.

First and as we always do, we set up amodel, declare our diagram, and assign the model
to it and the diagram to our chart after having included the relevant header files.

#i ncl ude <Qx Cui >

#i ncl ude <KDChart Chart >

#i ncl ude <KDChart Bar Di agr an»>

#i ncl ude <KDChart Header Foot er >

#i ncl ude <KDChart Position>

#i ncl ude <KDChart Backgr oundAttri but es>
#i ncl ude <KDChart FraneAttri butes>

116

usi ng namespace KDChart ;

class ChartWdget : public QN dget {

Q OBJECT

publi c:
explicit ChartWdget (QN dget* parent=0)
:{ QW dget (parent)

m nodel . i nsert Rows(0, 2, QVbdel | ndex());

m nodel . i nsert Col urms(0, 3, Qwdellndex());

for (int row = 0; row < 3; ++row)
for (int colum = 0; colum < 3; ++col um)
QWbdel | ndex i ndex = m nodel . i ndex(row col um, QVbdeI I ndex());
in_rmdel . set Dat a(i ndex, Qariant(rowtl * col urm)

}

Bar Di agr ant di agram = new Bar Di agr am
di agr am >set Model (&m nodel) ;

m chart. coordi nat ePl ane() - >r epl aceDi agr an(di agran);

We will configure the header position as well as its text, Background and Frame
attributes and includes the header files related to those attributes on this purpose. That
will allow us to make use of the methods available in these classes.

We will now add our header and set it up:

/1 Add at one Header and set it up

Header Foot er * header = new HeaderFooter(&m chart);
header - >set Posi ti on(Position::North);

header - >set Text("A Sinple Bar Chart");

m chart. addHeader Foot er (header);

The code above handle the attributes specific to a headers and footers the setters and
getters for the methods we have been used here are implemented in the
KDChar t hEADERf OOTER class. We recommend you to consult its interface. See
KDChar t Header Foot er . h.

Let us configure the header text attributes and make sure the font will be resized
together with the widget in case the user resize it.

/1 Configure the Header text attributes
Text Attri butes hta;
hta.setPen(QPen(Q::blue));

/1 let the header resize itself
/1 together with the widget.
/] so-called reI ative size
Measure n(35.0);
m set Rel ati verde(header - >aut oRef erenceArea(),
KDChar t Enuns: : Measur eOr i ent ati onM ni mum)
hta. set Font Si ze(m);
/1l mn font size
m set Val ue(3.0);
m set Cal cul ati oande(KDChar t Enuns: : Measur eCal cul ati onMbdeAbsol ute);
hta.set M ni mal Font Si ze(m);

117

/1 assign
header - >set Text Attri butes(hta);

Our header text is now displayed using a blue pen, the font are configured to take a
relative size.

We also want to configure a white background to make it nicer, and proceed as follow:

/1 Configure the header Background attributes
BackgroundAttri but es hba;

hba. setBrush(Q::white);

hba. setVisible(true);

header - >set BackgroundAttri butes(hba);

Asfor al types of attributes we just need to create the attribute object, configure it and
assign it to our header.

The same process is applied to configure header'sour frame attributes:

/1 Configure the header Frane attributes
FraneAttri butes hfa;

hfa.setPen(QPen (Brush(Q::darkGay), 2));
hfa.setVisible(true);

header - >set FraneAttributes(hfa);

In the code above we assign a pen to the frame attributes in order to get a Gray line
around the frame.

Note

Same procedure as above. Please note the set Vi si bl e() method which
is necessary as the default value hide the attributes above.

Finally we need to conclude our small application.

QvBoxLayout* | = new QvBoxLayout (this);
| - >addW dget (&m chart);
set Layout (1) ;

private:
Chart mchart;
@St andar dI t enivbdel m nodel ;

int main(int argc, char** argv) {
QAppl i cation app(argc, argv);

Chart Wdget w;
w. show() ;

118

return app. exec();

#i ncl ude "nmai n. noc"

See the screen-shot below to view The resulting chart displayed by the above code.

Figure7.2. A Chart with a configured Header
— X}

|A Simple Bar Chart|

L

We recommend you to compile and run the above example, it is available at the
following location: exanpl es/ Header sFoot er s/ Header sFoot er sPar anmeters .

Headers and Footers Example

In the following implementation we want to be able to:

* Add, edit or remove headers and footers in/from our chart view.
» Configuretheir positions.
* Settheir text

» All of the above operations should be available to the user from the GUI and
performed dynamically.

119

In the example below we are using a KDChar t Chart class and also an home made
Tabl eModel for the convenience. It is derived from QAbst r act Tabl eMbdel .

TableModel uses a simple rectangular vector of vectors to represent a data table that can
be displayed in regular Qt Interview views. Additionally, it provides a method to load
CSV files exported by OpenOffice Calc in the default configuration. This alows to
prepare test data using spreadsheet software.

It expects the CSV files in the subfolder ./modeldata. If the application is started from
another location, it will ask for the location of the model data files.

We recommend you to consult the "TableModel" interface and implementation files
which are located in the exanpl es/ t ool s directory of your KD Chart installation.

Let us concentrate on our diagram _with_ axis implementation for now and consult the
following files: other needed files like the ui, pro, grc ,CSV and main.cpp files can be
consulted from the exanpl es/ Legends/LegendAdvanced directory of your
installation.

/**

** Copyright (C) 2006 Kl arAsl vdal ens Datakonsult AB. Al rights reserved.

* %

5 ** This file is part of the KD Chart library.

* %

** This file may be distributed and/or nodified under the terms of the

** GNU General Public License version 2 as published by the Free Software

** Foundation and appearing in the file LICENSE. GPL included in the
10 ** packaging of this file.

* %

** |jcensees holding valid conmercial KD Chart |icenses may use this file in
** accordance with the KD Chart Commercial License Agreenent provided with

** the Software.
15 * %

** This file is provided AS | S with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
** WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.

* %

** See http://ww. kdab. net/kdchart for
20 ** i nformati on about KDChart Commerci al License Agreenents.
** Contact info@dab.net if any conditions of this

** |jcensing are not clear to you.
* %

25 **/

#i f ndef MAI NW NDOW H
#def i ne MAI NW NDOW H

30 #include <QD al og>
#i ncl ude <Qvap>

#i ncl ude "ui _mai nwi ndow. h"
#i ncl ude "ui _addheaderdi al og. h"
35 #incl ude <Tabl eMbdel . h>

nanmespace KDChart {
class Chart;

cl ass Dat aset ProxyModel ;
40 cl ass Li neDi agram

cl ass Mai nWndow : public QN dget, private U ::MinWndow
{

120

45 Q _OBJECT

publi c:
Mai nW ndowm QW dget* parent = 0);

50 private slots:
voi d on_addHeader PB_cl i cked();
voi d on_edi t Header PB_cl i cked();
voi d on_renoveHeader PB_cl i cked();
voi d on_headersTV_i t enSel ecti onChanged() ;

55

private:

voi d set upAddHeader Di al og(QDi al og* dl g, Ui::AddHeader Di al og& conf) const;

KDChart:: Chart* mchart;
60 Tabl eModel m nodel ;
KDChart : : Dat aset ProxyModel * m dat aset Proxy;
KDChart : : Li neDi agrant m | i nes;
b

65
#endi f /* MAI NW NDOWH */

In the above code we bring up the KDChart namespace as usual. As you can see we are
using a KDChartChart object (m_chart), a KDChartLineDiagram object (m_lines), and
our home made TableModel (m_modd!).

1

AR R R AR R LR R R R R R R R R R R R

** Copyright (C) 2006 Kl arAal vdal ens Datakonsult AB. All rights reserved.

* %

5 ** This file is part of the KD Chart library.
* %
** This file may be distributed and/or nodified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file LICENSE. GPL included in the

10 ** packaging of this file.
* %
** Licensees holding valid comrercial KD Chart |icenses may use this file in
** accordance with the KD Chart Commercial License Agreenment provided with
** the Software.

15 * %
** This file is provided AS 1S with NO WARRANTY OF ANY KI ND, | NCLUDI NG THE
** WARRANTY OF DESI GN, MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.
* *
** See http://ww. kdab. net/kdchart for

20 ** i nformati on about KDChart Conmmercial License Agreenents.
* %
** Contact info@dab.net if any conditions of this
** |icensing are not clear to you.

* %
25 LA R EEE SRR EEEEEEREEEEEEEEEEE R R R LRy

#i ncl ude "mai nwi ndow. h"

#i ncl ude <KDChart Chart>
30 #i ncl ude <KDChart Header Foot er >
#i ncl ude <KDChart Position>
#i ncl ude <KDChart Cart esi anCoor di nat ePl ane>
#i ncl ude <KDChart Li neDi agr an>
#i ncl ude <KDChart Text Attri but es>
35 #i ncl ude <KDChart Dat aset ProxyModel >
#i ncl ude <QConboBox>
#i ncl ude <QLi neEdi t>

121

#i ncl ude <QPen>

40 cl ass Headerltem: public QTreeWdgetltem
{
publi c:

Header | t en{ KDChart:: Header Foot er* header, QIreeW dget* parent)
QlreeW dgetItem parent), m header(header) {}

45
KDChart : : Header Foot er* header () const { return m header; }
private:
KDChart : : Header Foot er* m_header;
50 };

Mai nNW ndow: : Mai nW ndow(QW dget* parent)
QN dget (parent)
{

55 setupU (this);

HBoxLayout * chartlLayout = new HBoxLayout (chartFranme);
m chart = new KDChart:: Chart();
chartLayout - >addW dget (m chart);
60
m nodel . | oadFronCSV(":/data");

/1 Set up the di agram
m | ines = new KDChart::LineD agr anm();
65 m | i nes- >set Model (&m model ;
m chart - >coor di nat ePl ane() - >r epl aceDi agram(mlines);

m chart - >updat e() ;
70
voi d Mai nW ndow. : set upAddHeader Di al og(QDi al og* dl g, Ui::AddHeader Di al og& conf)const

conf.setupUi(dlg);
75 conf. t ext ED- >set Focus() ;

const QStringList |labels = KDChart:: Position::printabl eNames();
const QLi st<Byt eArray> names = KDChart:: Position::nanes();

80 for (int i =0, end = gMn(|abels.size(), names.size()) ; i !=-end ; ++i)
conf. positionCO >addlten(|abels[i], names[i]);

85 voi d Mai nW ndow: : on_addHeader PB_cl i cked()
{

QJ al og dl g;
: AddHeader Di al og conf;
set upAddHeader Di al og(&di g, conf);
90 conf.typeCO->setCurrentindex(0); // let us start with "Header"
conf. positionCO >set Currentlndex(0);
if(dI g exec()
DChart : : Header Foot er* header Footer = new KDChart:: Header Footer(mchart);
m char t - >addHeader Foot er(header Foot er);
95 header Foot er - >set Text (conf . t ext ED- >t ext ()
KDChart:: Text Attri butes attrs(header Footer- Stext Attri but es());
attrs. set Pen(QPen(Q::red));
header Foot er - >set Text At t ri but es(attrs);
header Foot er - >set Type(
100 conf.typeCO >current Text () == "Header"
? KDChart: : Header Foot er : : Header
KDChart : : Header Foot er : : Footer);
header Foot er - >set Posi ti on(
KDChart:: Position::fromNane(conf. positionCO >itenData(conf.positionCO >
105 / I header Foot er - >show() ;
Header | tent newltem = new Header|ten{ headerFooter, headersTV);
new t em >set Text (0, conf.textED >text());

122

110

115

120

125

130

135

140

145

150

155

160

165

170

175

newl t em >set Text (1, header Footer->type() == KDChart:: Header Foot er: : Header
? tr("Header")
: tr("Footer"));

newl t em >set Text (2, conf.positionCO >currentText());

m chart - >updat e();

voi d Mai nW ndow: : on_edi t Header PB_cl i cked()

if (headersTV->sel ectedltens().size() == 0) return;

Header|tenr item = static_cast <Headerltent>(headersTV->sel ectedltens().first())
KDChart : : Header Foot er * header Footer = item >header();

Qi al og dl g;

Ui : : AddHeader Di al og conf;
set upAddHeader Di al og(&dl g, conf);
conf .t ext ED- >set Text (header Footer->text());
conf. typeCO >set Current | ndex(
header Foot er5>type() == KDChart: : Header Foot er : : Header
?20: 1);
conf. posi ti onCO >set Current | ndex(
conf. posi ti onCO >fi ndText (header Foot er->position().printabl eNanme()));
if(dlg.exec())
header Foot er - >set Text (conf.text ED->text ());
header Foot er - >set Type(
conf.typeCO >current Text () == "Header"
? KDChart: : Header Foot er: : Header
: KDChart:: Header Foot er: : Footer);
header Foot er - >set Posi ti on(
KDChart:: Position::fromNane(conf. positionCO >itenData(conf. positionCO >
item >set Text(0, conf.textED->text());
item >set Text (1, header Footer->type() == KDChart:: Header Foot er: : Header
? tr("Header")
: tr("Footer"));
item >set Text (2, conf.positionCO >currentText());
m chart->update();

voi d Mai nW ndow: : on_r enoveHeader PB_cl i cked()

#if 0

#el se

#endi f

if (headersTV->selectedltens().size() == 0) return;
Qi st<QlreeWdgetltent> itenms = headersTV->sel ectedltens();
for(QList<QIreeWdgetltenr>::const_iterator it = itens.begin();
it I=items.end(); ++it)
{
KDChart : : Header Foot er* header Footer = static_cast<Headerltent¥>((*it))->head
/1l Note: Despite it being owned by the Chart, you *can* just delete
I/ the header: KD Chart will notice that and adjust its |ayout
del et e header Foot er;
/Il ... but the correct way is to first take it, so the Chart is no | onger own
m chart - >t akeHeader Foot er (header Footer);
/1 ... and then delete it:
del et e header Foot er;
delete (*it);

m chart - >updat e() ;

voi d Mai nW ndow: : on_header sTV_i t enfSel ect i onChanged()
{

r enmoveHeader PB- >set Enabl ed(header sTV->sel ectedltens().count() > 0);

123

edi t Header PB- >set Enabl ed(headersTV->sel ectedltens().count() == 1);
180

See the screen-shot below to view The resulting chart displayed by the above code.

Figure 7.3. Header sand Footer s advanced example

North Header
West Header East Header
South Header

=i
North Footer
West Footer East Footer

South Footer

This ready to run example is available at the following location exanpl es/
Header sFoot er s/ Advanced of your KD Chart installation, we recommend you to
study its code, compile and run it.

What's next

The next chapter will be dedicated to KDChart 2.0 Attributes model which is derived
indirectly from QAbstract ProxyModel and gives the user al flexibility to
customizing her's chart and its component at different levels (whole diagram, per index,
per row or column €tc....).

124

Chapter 8. Customizing your Chart

Customizing your chart means configuring the attributes available for the different
components of a chart (e.g diagrams, legends, headers and footers etc...). In Chapter 4
- Cartesian Coordinate Plane and Pol ar Coordi nate Pl ane we have been
looking at the different attributes specific to a certain type of diagram (Line, Bar, Pie,
etc...). In this chapter we will go through the details when it comes to the attributes
related to the elements of a chart and also the ones common to al types of charts.

Attributes Model, Abstract Diagram

The KDChart At t ri but esModel class is derived from QAbst r act Pr oxyModel and
used internally by the base class for all diagrams KDChar t Abst r act Di agr amwhich
set AttributesModel (AttributesMbdel* nodel) method associates an
AttributesModel with a diagram.

Note

The diagram does _not take ownership of the AttributesModel. This
should thus only be used with AttributesModels that have been explicitely
created by the user. Setting an AttributesModel that is internal to another
diagramis an error.

Let usillustrate the above assertion, the right way is:

/'l correct

AttributesMdel *am = new AttributesMdel (nodel, 0);
di agraml->set Attri butesMdel (am);

di agran®- >set Attri but eshbdel (am);

It would be wrong to proceed as follow:

/'l Wong
di agraml- >set Attri but eshModel (di agran®2->attri buteshdel ());

To retrieve the attribute model associated to a particular diagram, we can make use of
the KDChar t Abst r act Di agr ammethod at t ri but esMbdel ().

Note

By default each diagram owns its own AttributesModel, which should
never be deleted. Only if a user-supplied AttributesModel has been set
does the pointer returned here not belong to the diagram.

125

How it Works

Let us make this more concrete by looking at the following methods for settings a Pen
and extracted from KDChar t Abst r act Di agr anisinterface.

voi d set Pen(const Qwbdel | ndex& i ndex, const QPen& pen);
voi d setPen(int dataset, const QPen& pen);
voi d set Pen(const QPen& pen);

Note

KDChar t Abst ract Di agram defines the interface, that needs to be
implemented for the diagram, to function within the KDChart framework.
It extends Interview's AbstractitemView.

Those methods allow us to set the Pen to be used respectively: at a given index, for a
given dataset, or for all datasetsin the model.

By looking at their implementations we can see how we make use of the
KDChart Attri but esModel methods setData(), setHeaderData(), and
set Mbdel Dat a() to achieve thistask.

voi d Abstract Di agram : set Pen(const Qwbdel | ndex& i ndex, const QPen& pen)
attri but esModel () ->set Dat a(
attri but esMobdel () - >mapFr onSour ce(index),
gVari ant FronVal ue(pen), DatasetPenRole);
voi d AbstractDi agram : set Pen(const QPen& pen)
attri but esModel () - >set Model Dat a(
gVari ant FronVal ue(pen), DatasetPenRole);
voi d AbstractDi agram : setPen(int colum, const QPen& pen)
attri but esMbdel () - >set Header Dat a(
colum, Q::Vertical,

gVari ant FronVal ue(pen),
Dat aset PenRol e) ;

The above description to demonstrate how it works for ailmost all the attributes available
for the configuranble elements of a chart, and the flexibility of this approch.

Note

It is important to know that have three levels of precedence when setting

126

the attributes; Which means that once you have set the attributes for a

* Global: Weak
* Per column: Medium
» Percell: Strong

the attributes: Which means that once you have set the attributes for a
column or a cell, you will not be able to change those settings by calling
the "global" method to reset it to another value, but instead call the per
column or per index setter. As demonstrated in the above code.

In the next section we will have a quick look at the attributes common to al chart types
and elements of a chart and learn about the way to use them.

Data Values Attributes

The Data Vaue Attributes group all properties that can be set in relation to data value
labels and if and how they are displayed. This includes things like the text attributes
(font, color), what markers are used, and how many decimal digits are displayed, etc.

We recommend you to consult KDChar t Dat aVal ueAt t ri but es" interface to find out
more in details what can be done. In this section we will describe quickly its main
properties and go through a commented example that will demonstrates how to proceed
in order to use and configure those attributes.

Data values can be set with some defined text, background, frame and markers, the list
below gives us an overview about the most used features. We will only list the setters
here and explain them - Of course each of those setters has a corresponding getter:

» setVisible(bool visible): Set whether data value labels should be displayed.

» setTextAttributes(const TextAttributes &a): Set the text attributes to use for the
datavalue labels.

e setFrameAttributes(const FrameAttributes &a): Set the frame attributes to use for
the data value labels area.

» setBackgroundAttributes(const BackgroundAttributes &a): Set the background
attributes to use for the data value labels area.

» setMarkerAttributes(const MarkerAttributes &a): Set the marker attributes to use
for the data values. Thisincludes the marker type.

e void setDecimaDigits(int digits): Set how many decimal digits to use when

127

rendering the data value labels.

The process to configure the data value attributes for a diagram is very simple, and
similar to all other kind of attributes:

» Call the relevant attributes - e.g We want to configure the font and colors we need to
configure the Text attributes and call them as follow: TextAttributes ta(
dat aval uesattrinbutes.textAttri butes())

» Assign the configurated attributes to your data values attributes. eg call
dat aval ueattri butes. set TextAttributes(ta).

» set them asvisdible implicitly and assign them to the diagram by calling the diagram
method di agr am >set Dat aVal ueAttri but es(dat aval uesattri butes)

DataValue Attributes Sample code

Let us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the nmai n. cpp file of the exanpl es/
Li nes/ Par anet er s dlightly modified. We recommend you to compile and run this
example and to study its code.

)”bisplay val ues
/1 1 - Call the relevant attributes
a

Dat aVal ueAttri but es dva(di agram >dat aVal ueAttributes());

/1 2 - W want to configure the font and colors
I/ for the data val ues text.

Text Attributes ta(dva.textAttributes());
//rotate if you w sh

ta.setRotation(45);

/1 3 - Set up your text attributes
ta.setFont(QFont("Comic", 6));
ta.setPen(QPen(Color(Q::darkGeen)));
ta.setVisible(true);

/1l 4 - Assign the text attributes to your
I/ Dat aVal uesAttri but es

dva. set Text Attributes(ta);
dva.setDecimal Digits(4);
dva.setVisible(true);

/Il 5 - Assign to the diagram
di agram >set Dat aVal ueAttri butes(dva);

Il 6 - ASS|gn the diagramto the chart
m chart. coordi nat ePl ane() - >r epl aceDi agr an(di agran);

/1 make sure there is space to display the

/1 data value | abels at the edges of the data area
m chart. set d obal Leadi ng(15, 15, 15, 15);

128

As we can see the code is straight forward and the process is similar as for setting all
otherstypes of attributes.

See the screen-shot below to view The resulting chart displayed by the above code.

Figure8.1. A Chart with a configured Data Values L abels

We recommend you to modify, compile and run the example at the following location:
exanpl es/ Li nes/ Par anet er s.

Text Attributes

Text At tri but es encapsulates settings that have to do with text. This includes font,
fontsize, color, whether the text is rotated, etc...

We recommend studying the KDChar t : : Text At t ri but es APl documentation to find
out more in details what can be done. In this section we will describe quickly its main
properties and go through a commented example that will demonstrates how to proceed
in order to use and configure those attributes.

Text attributes can be set with some defined font, pen, rotation etc... The text font size
can be fixed or relative (e.g it will adapt to the widget size), the list below gives us an
overview about the most used features. We will only list the setters here and explain
them - Of course each of those setters has a corresponding getter:

129

* setVisible(bool visible): Set whether text attributes should be displayed.
» setFont(const QFont& font): Set the font to be used for rendering the text.

» void setFontSize(const Measure & measure): Set the size of the font used for
rendering text

e satMinimalFontSize(const Measure & measure): Set the minimal size of the font
used for rendering text.

» setRotation(int rotation): Set the rotation angle to use for the text.

e setPen(const QPen& pen): Set the pen to use for rendering the text.

The process to configure the text attributes any elements of a chart is very simple, and
similar to al other kind of attributes:

e Call the text attributes - e.g We want to configure the font and colors we need to
configure the Text attributes and call them as follow: Text Attributes ta(
header.text Attributes())

 Assign the configurated attributes to your header attributes. eg call
header. set Text Attri butes(ta).

Text Attributes Sample code

Let us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the mai n. cpp file of the exanpl es/
Header sFoot er s/ Header sFoot er sPar anet ers. We recommend you to compile
and run this example and to study its code.

H”Oonfigure the Header text attributes
Text Attributes hta;
hta.setPen(QPen(Q::blue));

/Il let the header resize itself
/1 together with the wi dget.

/] so-called relative size

Measure n(35.0);

m set Rel ati veMode(header - >aut oRef er enceArea(),
KDChar t Enuns: : MeasureOri entati onM ni mum) ;

ht a. set Font Si ze(m);

/'l mn font size

m set Val ue(3.0);

m set Cal cul ati onMbde(

KDChar t Enuns: : Measur eCal cul at i onMbdeAbsol ute);
hta. set M ni nal Font Si ze(m);

/] Assign thre text attributes
/1 to our header.

130

header - >set Text Attri butes(hta);

As we can see the code is straight forward and the process is similar as for setting all
otherstypes of attributes.

See the screen-shot below to view The resulting chart displayed by the above code.

Figure 8.2. A Chart with a configured Data Values L abels
— XW

|A Simple Bar Chart|

We recommend you to modify, compile and run the example at the following location:
exanpl es/ Header sFoot er s/ Header sFoot er sPar anet ers.

Markers Attributes

MarkerAttributes encapsul ates settings that have to do with markers. This includes there
types (sguare, diamond, ring etc...), size and colors. For the convenience the user may
also set up aMap of markers...

We recommend you to consult KDChart Mar ker Attri but es' interface to find out
more in details what can be done. In this section we will describe quickly its main
properties and go through a commented example that will demonstrates how to proceed
in order to use and configure those attributes.

Marker attributes can be set with some defined type(s), size, color etc..., the list below

131

gives us an overview about the most used features. We will only list the setters here and
explain them - Of course each of those setters has a corresponding getter.

o satMarkerStyle(const MarkerStyle style): Set the style of the marker to be used.
» setMarkerSize(const QSizeF& size): Set the size of the marker.
e satMarkerColor(const QColor& color): Set the color of the marker.

» void setVisible(bool visible): Set whether marker attributes should be displayed.

e satMarkerStylesMap(MarkerStylesMap map): Define a map of marker to be used.

Note

As defined in the KDChart MarkersAttributes classinterface the
differnet marker types available are:

enum MarkerStyle { MarkerCircle
Mar ker Squar e
Mar ker Di anond
Mar ker 1Pi xel
Mar ker 4Pi xel s
Mar ker Ri ng
Mar ker Cr oss
Mar ker Fast Cr os

NonrwNEO

[I I I B I e T 1

The process to configure the marker attributes is very simple, and similar to all other
kind of attributes:

e Call the marker attributes - e.g We want to configure their types and sizes we need
to configure the data values marker attributes and call them as follow:
Mar ker Attri butes ma(dva.markerAttributes())

* Assign the configurated attributes to your data values attributes. e.g call
dva. set Marker Attributes(m).

Markers Attributes Sample code

L et us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the mai nwi ndow. cpp file of the
exanpl es/ Axi s/ Par anet er s. We recommend you to compile and run this example
and to study its code.

132

/] set up a nmap W|th di fferent marker styles

Mar ker Attri but es: : Marker Styl esMap map;

map. i nsert (MarkerAttrlbutes:.Markequuare)
map. i nsert (Marker Attri butes:: MarkerGCircle);
map. i nsert(Mar ker Attributes:: MarkerRing);
map. i nsert (Mar ker Attri butes:: MarkerCross);
map. i nsert (4 Mar ker Attri but es: : Mar ker Di anond) ;

[MINTEY)

/1" Confi gure mmarkers per dataset in this exanple
const int col Count =

m | i nes- >nodel () >col utmCount (m_| i nes- >r oot | ndex())
for ("int iColum = 0; iColum<col Count; ++i Colum) {

Dat aVal ueAttributes dva

(mlines->dataVal ueAttributes(i Colum));

Marker Attributes ma(dva.nmarkerAttributes());

ma. set Mar ker Styl esMap(nmap);

ma. set Marker Si ze(QSI ze(mar ker sW dt hSB- >val ue(),

mar ker sHei ght SB- >val ue()));

}

me. setVisible(true);

/1 Assign markers attributes

/l to Data values attributes

dva. set Marker Attri butes(ma);

/1 Assign Data Values Attributes to

/1 Di agram
m | i nes- >set Dat aVal ueAttri butes(i Colum, dva);

As we can see the code is straight forward and the process is similar as for setting all
otherstypes of attributes.

See the screen-shot below to view The resulting chart displayed by the above code.

Figure 8.3. A Chart with configured Data Values Markers
)

i

[] Display Data Values

Line Chart Type:

Normal

[®| Paint Lines

Markers: 5 .

[%] Paint Markers
Markers Style

Circle

Markers Size:

Width:

133

We recommend you to modify, compile and run the example at the following location:
Seefile: exanpl es/ Axi s/ Par anet er s/ mai nwi ndow. cpp.

Background Attributes

Background attributes encapsulates settings that have to do with backgounds for the
divers elements of a chart view. This includes there modes(pixmap and its sub-modes
and brush)...

We recommend you to consult KDChar t Backgr oundAt t r i but es'interface to find out
more in details what can be done. In this section we will describe quickly its main
properties and go through a commented example that will demonstrates how to proceed
in order to use and configure those attributes.

The list below gives us an overview about the most used features. We will only list the
setters here and explain them - Of course each of those setters has a corresponding
getter.

e satVisible(boal visible):

» setBrush(const QBrush &brush):

e setPixmapMode(BackgroundPixmapM ode mode):

* setPixmap(const QPixmap & backPixmap):

Note

As defined in the KDChar t Backgr oundAt t ri but es classinterface the
different Backgr oundPi xmapMbde available are:

enum Backgr oundPi xmapMde {
Backgr oundPi xmapModeNone,
Backgr oundPi xmapModeCent er ed,
Backgr oundPi xnapMbdeScal ed,
Backgr oundPi xmapModeSt r et ched

The process to configure the background attributes is very simple, and similar to all
other kind of attributes:

e Call the background attributes and configureit.

134

e Assign the configurated attributes to the element of a chart.
el ement . set BackgroundAttributes(ba).

Background Attributes Sample code

L et us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the mai n. cpp file of the exanpl es/
Backgr ound. We recommend you to compile and run this example and to study its
code.

/1 Configure the plane's Background

BackgroundAttri butes pba;

pba. set Pi xmap(*pi xmap);

pba. set Pi xmapMode(

BackgroundAttri but es:: Backgr oundPi xmapMbdeStret ched);

pba. set Vi si bl e(true)'

di agr am >coor di nat ePl ane() - >set BackgroundAttri butes(pba);

/'l Configure the Header's Background
BackgroundAttri butes hba;
hba. set Brush(Q::white);

hba. set Vi si bl e(true)
header - >set BackgroundAttri butes(hba);

As we can see the code is straight forward and the process is similar as for setting al
others types of attributes.

See the screen-shot below to view The resulting chart displayed by the above code.

Figure8.4. A Chart with configured Back Ground Attributes

135

We recommend you to modify, compile and run the example at the following location:
Seefile: exanpl es/ Backgr ound.

Frame Attributes

Frame attributes encapsulates settings that have to do with frames for the divers
elements of a chart view. Thisincludes their pen and padding properties...

We recommend you to consult KDChar t Fr aneAt t ri but es'interface to find out more
in details what can be done. In this section we will describe quickly its main properties

and go through a commented example that will demonstrates how to proceed in order to
use and configure those attributes.

The list below gives us an overview about the most used features. We will only list the
setters here and explain them - Of course each of those setters has a corresponding
getter.

» setVisible(boal visible):

» setPen(const QPen &pen):

e setPadding(int padding):

The process to configure the frame attributes is very simple, and similar to all other kind
of attributes:

136

e Call the frame attributes and configure it.

* Assign the configurated attributes to the eement of a chart.
el ement . set FranmeAttri butes(fa).

Frame Attributes Sample code

L et us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the nmai n. cpp file of the exanpl es/
Backgr ound. We recommend you to compile and run this example and to study its
code.

/1 Configure the plane Frane attributes

FraneAttri butes pfa;

pfa.setPen(QPen (Brush(Q::blue), 2));
pfa.setVisible(true);

di agram >coor di nat ePl ane() - >set FraneAttri butes(pfa);

/] Configure the header Frane attributes
FrameAttributes hfa;

hfa.set Pen(QPen (Brush(Q::darkGay), 2));
hf a. set Paddi ng(2);

hfa.setVisible(true);

header - >set FraneAttri butes(hfa);

As we can see the code is straight forward and the process is similar as for setting all
otherstypes of attributes.

See the screen-shot below to view The resulting chart displayed by the above code.

Figure 8.5. A Chart with configured Frame Attributes

= il

A Simple Bar Chart

\\\\
I N
\\

137

We recommend you to modify, compile and run the example at the following location:
Seefile: exanpl es/ Backgr ound.

Grid Attributes

Grid attributes encapsulates settings that have to do with grids. This includes their pen,
step width, visibility properties ...etc

We recommend you to consult KDChar t Gri dAt t ri but es'interface to find out morein
details what can be done. In this section we will describe quickly its main properties and
go through a commented example that demonstrates how to proceed in order to use and
configure those attributes.

The list below gives us an overview about the most used features. We will only list the
setters here and explain them - Of course each of those setters has a corresponding
getter.

setGridVisible(bool visible): set whether the grid should be painted or not

setGridStepWidth(greal stepWidth=0.0): set the distance between the lines of the
grid

setGridPen(const QPen & pen): set the main grid pen.
setSubGridVisible(bool visible): Specify whether the sub-grid should be displayed.
setSubGridPen(const QPen & pen): set the sub-grid pen.

setZeroLinePen(const QPen & pen): set the zero line pen.

The process to configure the grid attributes is very simple, and similar to all other kind
of attributes:

Call the grid attributes and configure it.

Assign the configurated attributes to the plane using one of the setter available, e.g
Cartesi anCoordi natePl ane: :setGidAttributes (Q::Orientation
orientation, const GidAttributes &). or

Abst ract Coor di nat ePl ane: : set G obal Gri dAttri butes (const
GidAttributes &)

Note

In case you want to set your grid attributes with orientation using the

138

Car t esi anCoor di nat ePl ane method above you will need to cast your
Abst r act Coor di nat ePl ane* coordi nat ePl ane() const; which
return a pointer to Abstract Coor di nat ePl ane as presented in the
following example.

Otherwise you just need to set the grid attributes globally as follow:

GidAttributes ga = di agram >coor di nat ePl ane()->gl obal Gri dAttri butes();
ga.setd obal GidVisible(false);
di agr am >coor di nat ePl ane- >set G obal Gri dAttri butes(ga);

Grid Attributes Sample code

Let us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the mai n. cpp file of the exanpl es/
G i ds. We recommend you to compile and run this example and to study its code.

/ di agram >coor di nat ePl ane returns an abstract plane.
/ if we want to specify the orientation we need to cast
/ as follow
Cart esi anCoor di nat ePl ane* pl ane =
static_cast <Cartesi anCoordi nat ePl ane* >
(di agram >coor di nat ePl ane());

/
/
/

Il retrieve your grid attributes

/1 display grid and sub-grid

GidAttributes ga (plane->gridAttributes(Q::Vertical));
ga.setGidVisible(true);

ga.set SubGidVisible(true);

/1 Configure a grid pen

QPen gridPen(Q::magenta);
gridPen.setWdth(3);
ga.setGidPen(gridPen);

/1 Configure a sub-grid pen

QPen subGidPen(Q::darkGay);
subGi dPen. set Styl e(Q::DotLine);
ga. set SubGi dPen(subGidPen);

/! Display a blue zero line
ga. set ZeroLi nePen(QPen(Q::blue));

/'l Assign your grid to the plane
pl ane->set G i dAttributes(Q::Vertical, ga);

As we can see the code is straight forward and the process is similar as for setting all
otherstypes of attributes.

See the screen-shot below to view The resulting chart displayed by the above code.

Figure8.6. A Chart with configured Grid Attributes

139

|A Line Chart with Grid Configured|

We recommend you to modify, compile and run the example at the following location:
Seefile: exanpl es/ Gri ds.

ThreeD Attributes

ThreeDAttributes properties are defined at different levels in the KD Chart 2 API. We
have the properties available to all types of diagram which are defined in the
KDChart Abst ract ThreeDAt t ri but es and the ones specific to atype of diagram. At
the moment we support THreeD for Bar, lines and Pie diagrams and the ThreeD
attributes for those diagrams types are defined in their own attributes classes. We have
KDChart ThreeDBar At tri but es, KDChart ThreeDLi neAttri but es and
KDChar t Thr eeDPi eAttri but es

ThreeD attributes encapsulates settings that have to do with threeD display. This
includes their depth, angle, rotation etc ... depending of the chart type we are working
with.

We recommend you to consult the * ThreeDAt t ri but es classinterface to find out
more in details what can be done. In this section we will describe quickly its main
properties and go through a commented example that demonstrates how to proceed in
order to use and configure those attributes.

The list below gives us an overview about the most used features. We will only list the
setters here and explain them - Of course each of those setters has a corresponding
getter.

140

1 - Generic (common to all diagrams) ThreeD Attributes

setEnabled(bool enabled): set whether threeD display mode is on or off.

setDepth(double depth): set the depth of the threeD effect (see example below).

2 - ThreeD Bar Attributes - Specific to bar diagrams.

e satAngle(uint threeDAnNgle): Not implemented yet

3 - ThreeD Line Attributes - Specific to line diagrams.

setLineXRotation(const uint degrees): rotate the x coordinate.

setLineY Rotation(const uint degrees): rotate the y coordinate.

4 - ThreeD Pie Attributes - Specific to Pie diagrams.

setUseShadowCol ors(bool useShadowColors): Not implemented yet

The process to configure the grid attributes is very simple, and similar to all other kind
of attributes:

o Call thethreeD attributes and configureit.

e Assign the configurated attributes to the diagram by calling the available method
set ThreeDAt t ri but es() method.

ThreeD Attributes Example

Let us make this more concrete by looking at the following lines of code which describe
the above process. This example is based on the mai nwi ndow. cpp file of the
exanpl es/ Bar s/ Advanced. We recommend you to compile and run this example and
to study its code.

/] Retrieve the threeD attributes for
/] the diagram
ThreeDBar Attributes td(mbars->threeDBarAttributes());

/1 set its depth property
td. set Dept h(dept hSB->val ue());

141

/1 Inplicitely enable threeD Mde
td. set Enabl ed(true);

/1 Assign to the diagram
m bar s- >set ThreeDBar Attri butes(td);

/'l Re-paint
m chart->updat e();

As we can see the code is straight forward and the process is similar as for setting all
otherstypes of attributes.

See the screen-shot below to view The resulting chart displayed by the above code.

Figure8.7. A ThreeD Bar Chart

[] Display Data Values

Bar Chart Type:

Normal H

Pen Settings
[] Mark Column _s

Paint ThreeD Bars
[%| ThreeD

5 Bars Depth [|5
Configure Width

CBarswidth [0 [

We recommend you to modify, compile and run the example at the following location:
Seefile exanpl es/ Bar s/ Advanced.

142

Font Sizes and other Measures

This chapter illustrates how to use the KDChart: : Measur e class to specify sizes.
Closely related to Measur e is the KDChart : : Rel ati vePosi ti on class explained in
the section Rel ati ve and Absol ute Positi ons following thisone.

When and how to use the Measure class

KDChart : : Measur e is used to specify absolute values or relative measures to be re-
calculated at runtime according to the size of a reference area, e.g. for font sizes or to
define the distance between atext and its anchor point.

e Absolute values are used to set a fixed measure, e.g. when the same font sizeisto be
used, no matter how large the chart widget is displayed.

» Relative measures specify values that are multiplied by 1/1000 of their reference
area's width (or height, resp.) at runtime. KD Chart uses this to link the default
legend fonts to the chart's size: The legend is adjusted when your widget is resized.

Tip

The KDChart::TextAttributes class can handle both kinds of
measures at the same time: Y ou often might wish to specify arelative size
viaset Font Si ze and set afixed value viaset M ni nmal Font Si ze so the
font will be dynamically calculated according to the area size but it will
never be smaller than that specific minimum.

Being a typical value class Measur e is commonly initialized by the copy constructor
since you should modify KD Chart's pre-defined settings rather than defining new ones
from scratch. File exanpl es/ Li nes/ Par anet er s/ mai n. cpp shows how to do that:

/!l Retrieve the data value attrs fromyour diagram and retrieve their text attrs
Dat aVal ueAttri butes dva(di agram >dataVal ueAttributes());
TextAttributes ta(dva.textAttributes());

/!l Retrieve the font size and increase its val ue
Measure me(ta.fontSize());
nme. set Val ue(ne.value() * 1.25);

/1 Make the data value texts visible
ta.setVisible(true);
dva.setVisible(true);

/1l Set the font size, set the text attrs, set the data value attrs
ta.setFontSize(me);

dva. set Text Attributes(ta);

di agram >set Dat aVal ueAttri butes(dva);

143

How to specify absolute values

To specify an absolute value for a Measure that you have initiadized via copy
constructor please use the set Absol ut eVal ue() method:

Measure me(soneText Attributes.fontSize());
nme. set Absol ut eVal ue(16);
soneText Attri butes. set Font Si ze(nme);

If you want to declare a new Measure from scratch just set the first two constructor
parameters:

Measure nme(16, KDChartEnuns:: MeasureCal cul ati onModeAbsol ute);

In this case you can ommit the third parameter, since the orientation setting is ignored
for absolute values.

How to specify relative values

To specify arelative value for a Measure (no matter if initialized via copy constructor or
not) you can use set Val ue() together with either set Rel ati veMbde() or both
set Ref erenceArea() and/or set ReferenceOrientation(). So if your measure
was using afixed font size before you could say:

nme. set Val ue(25);
nme. set Rel ati veMbde(m chart, KDChartEnuns:: MeasureOrientati onM ni mum);

Note that set Rel ati veMbde() is a convenience method that will implicitely enable
the relative calculation mode.

When not wusing setRelativeMbde() you need to explicitely cal
set Cal cul ati onMbde(KDChar t Enuns: : Measur eCal cul ati onMbdeRel ati ve
), if your Measure was not set to this mode before;

ne. set Val ue(25);

me. set Ref erenceArea(mchart);

nme. set Ref erenceOri entati on(KDChart Enuns:: MeasureOrientati onM ni num);

nme. set Cal cul at i onMbde(KDChar t Enuns: : Measur eCal cul at i onMbdeRel ative);

In both cases the reference area must be derived from KDChart : : Abstract Area or
derived from QW dget. The orientation can be Horizontal, Vertical, Minimum,
Maximum, the later ones meaning the area's gMin(width, height) or its gMax(), resp.

144

Relative and Absolute Positions

This chapter covers the KDChart:: Position and KDChart:: Rel ati vePosition
classes. For details on the closely related KDChar t : : Measur e class see the preceeding
section Font Si zes and ot her Measures.

What is relative positioning all about?

Introduced for floating objects in KD Chart 2 relative positioning is defining a point in
relation to areference point that in turn is specified in relation to areference area.

This illustration shows the nine position points defined for a bar, see the magnified area
for the relative positioning of negative / positive data value texts.

Figure 8.8. Data value text positions relative to compass points

0z - - a2

How to specify a position

1. If necessary name areference area or define a set of reference points.
2. UseKDChart: : Posi ti on to pick one of the reference area's compass points.

3. Specify padding and alignment in horizontal and vertical direction.

145

Using Position and RelativePosition

[llustrated on the preceeding page you have seen the most common use of these position
classes: Defining the placement of data value texts in relation to their respective areas.

By default positive and negative data value texts are positioned in different ways. While
positive texts would use the bar's Posi ti on: : Nort hWest their negative counterparts
are located next to the Posi t i on: : Sout hEast point of the bar. Also the positive texts
are using another way of alignment than the negative ones.

The reason for this is to make it easy to specify rotated data value texts. Because of
different reference points and alignment the texts will look good even when rotated,
without the need of adjusting other settings than just the rotation angle itself.

Being a typical value class Rel ati vePosi ti on is commonly initialized by the copy
constructor since you should modify KD Chart's pre-defined settings rather than
defining new ones from scratch, so you could specify non-rotated, centered texts as
shown in the following code, that is using extra indentation to indicate get/set
relationship:

/! Retrieve the data value attrs from your diagram
Dat aVal ueAttri butes dva(di agram >dat aVal ueAttributes());

/] Set the text rotation to Zero degrees

Text Attributes ta = dva.textAttributes();
ta.setRotation(0);

dva.set Text Attri butes(ta);

/!l Retrieve the current position settings
Rel ati vePosi tion posPositive(dva.position(true));
Rel ati vePosi tion posNegative(dva.position(false));

/1 Choose the centered position points
posPosi tive. set Ref erencePosition(Position::North);
posNegati ve. set Ref erencePosi tion(Position::South);

/1 Adjust the alignnent of the texts:

/1 horizontally centered to their respective position points
posPositive.setAlignment(Q::AlignHCenter | Q::AlignBottom);
posNegative.set Alignment(Q::AlignHCenter | Q::AlignTop);

/1 Set the positions
dva. set Posi ti vePosition(posPositive);
dva. set Negati vePosi ti on(posNegative);

/1 Make the data value texts visible
dva.setVisible(true);

/] Set the data value attrs
di agram >set Dat aVal ueAttri butes(dva);

What's next

146

Advanced charting.

147

Chapter 9. Advanced Charting

In this section we are presenting some examples to demonstrate interesting features
offered by the KD Chart 2.0 API by displaying the resulting widget and giving you a
link to the directory in which you can study the example code, compile and run it.

Example programs to consult

This chapter will grow in relation to the feedback and whishes we get from our
customers.

1-/exanpl es/ Axi s/ Par anet ers

Figure9.1. /examples/Axis/Parameters

S e

[] Display Data Values

Ordinate axis at the left side

Ordinate axis at the right side

Abscissa axis at the bottom

[] Display Legend

2 - | exanpl es/ Bar s/ Advanced

Figure 9.2. /examples/Bar s/Advanced

148

— -
v} BarChart [_E=0%]

[X] Display Data Values

Bar Chart Type:

Saded |-

Pen Settings.
% Mark Column
Paint ThreeD Bars

¥ ThreeD

() ars et (2013
Configure Width

[IBarswidth [8 [2]

3 -/ exanpl es/ Header sFoot er s/ Header sFoot er s/ Advanced

Figure 9.3. /examples/Header sFooter s/Header sFooter Advanced
e

~Headers and Footers:

Advanced

Text Type Position
Advanced Header Center

Add... H Edit... H Fimrrom

4 - | exanpl es/ Legends/ LegendAdvanced

Figure 9.4. /examples/L egends/L egendAdvanced

149

B RDICHAr 2examplereaenTe: sl

Legend
Position Show Lines Title
NorthEast yes “Legend

a (D)
[Agd.][Edt. |[Remowe |

5 -/ exanpl es/ Li nes/ Advanced

Figure 9.5. /examples/Lines/Advanced
=k

% Display Data Values 3

Line Chart Type:

Show Areas
[Highlight Area 2
- e \
Animate) N
] Highlight -5 15\ / \

6 - / exanpl es/ Model Vi ew

Figure 9.6. /examples/M odelView

You can edit the table data, or select table cells with keyboard/mouse.

W Automotive
W Acrospace B
W Automation & Mach.. 13 20
M Medical & Boinfor... 13 6

M maging & Special .. 12 0
M Defense RIE

B Test & Measureme... 9 3
10/ 0il& Gas 9 14
1] Enrament o . l II I
: - | 1 Ml |

7 - | exanpl es/ Pi e/ Advanced

150

Figure9.7. /lexamples/Pie/Advanced

—

BN CPiEChart l=lix))
Start position: W-s
e
X3
~ Explode

Daesa

Factor 0.05 =]

["] Animate

8 -/ exanpl es/ Shar edAbsci ssa

Figure 9.8. /examples/SharedAbscissa

—

) > SSharedAbscissa _fi XW

11|
1]
il
I
\
:-{
T
[LTUTA
\
sl
|‘I
1

\
[
[
‘ |
[}

9 -/ exanpl es/ W dget / Advanced

Figure 9.9. /examples/Widget/Advanced

151

il i)

Header West Header Center Header East

| N . .
m2

Footer Center Footer East

|25:3.8 || Add dataset

Footer West

What's next

FAQ.

152

Appendix A. Q&A section

Storing / loading of KD Chart settings

AA.
1.1. How can | store KD Chart settingsto afile?
This can be done by using the KDChart : : Seri al i zer class.

Note that KDChart : : Seri al i zer isdependent on your Qt library containing the
Q Xm module which provides C++ implementations of SAX and DOM

The decision to have KDChart : : Seri al i zer in a separate library was made to
allow you to build KD Chart even if your version of Qt does not include the XML
module.

To build it, just run

cd kdchartserializer
grmeke
make (or nmake, for Wndows, resp.)

Please refer to the examples stored in kdchartserializer/exanpl es/
showing how to use the serializer and how to connect your diagram(s) to the
correct data model(s) after the serializer has finished running.

Note

This section will grow further according to the most frequently asked
questions to our support.

153

	KD Chart Programmer's Manual
	Table of Contents
	Chapter 1. Introduction
	What You Should Know
	The Structure of This Manual
	What's next

	Chapter 2. KD Chart 2 API Introduction
	Overview
	Code Sample

	KD Chart and Interview
	Code Sample

	Attribute sets
	Code Sample

	Memory Management
	Code Sample

	What's Next

	Chapter 3. Basic steps: Create a Chart
	Prerequisites
	The Procedure
	Two Ways To Your Chart
	Widget Example
	Chart Example

	What's Next

	Chapter 4. Planes and Diagrams
	Cartesian Coordinate Planes
	Bar Charts
	Normal Bar Charts
	Stacked Bar Charts
	Percent Bar Charts
	Code Sample
	Bars Attributes
	Bar Attributes Sample
	Tips and Tricks
	A complete Bar Example
	Line Charts
	Normal Line Charts
	Stacked Line Charts
	Percent Line Charts
	Code Sample
	Lines Attributes
	Line Attributes Sample
	Tips and Tricks
	A complete Line Example
	Point Charts
	Point Sample Code
	Points Attributes
	Tips and Tricks
	A complete Point Example
	Area Charts
	Area Sample Code
	Area Attributes
	Tips and Tricks
	A complete Area Example

	Polar coordinate plane
	Pie Charts
	Simple Pie Charts
	Exploding Pie Charts
	Code Sample
	Pies Attributes
	Pie Attributes Sample
	Tips and Tricks
	A complete Pie Example

	What's next

	Chapter 5. Axes
	Cartesian Axis
	How to configure
	Cartesian Axes sample

	Tips
	Axis Example

	What's next

	Chapter 6. Legends
	How to configure
	Legend Sample

	Tips
	Legend Example

	What's next

	Chapter 7. Header and Footers
	How to configure
	Headers and Footers code Sample

	Tips
	Headers and Footers Example

	What's next

	Chapter 8. Customizing your Chart
	Attributes Model, Abstract Diagram
	How it Works

	Data Values Attributes
	DataValue Attributes Sample code

	Text Attributes
	Text Attributes Sample code

	Markers Attributes
	Markers Attributes Sample code

	Background Attributes
	Background Attributes Sample code

	Frame Attributes
	Frame Attributes Sample code

	Grid Attributes
	Grid Attributes Sample code

	ThreeD Attributes
	ThreeD Attributes Example

	Font Sizes and other Measures
	When and how to use the Measure class
	How to specify absolute values
	How to specify relative values

	Relative and Absolute Positions
	What is relative positioning all about?
	How to specify a position
	Using Position and RelativePosition

	What's next

	Chapter 9. Advanced Charting
	Example programs to consult
	What's next

	Appendix A. Q&A section

